Trigonometry Examples
S={(1,1,1),(0,1,1)}S={(1,1,1),(0,1,1)}
Step 1
Assign a name for each vector.
u⃗1=(1,1,1)u⃗1=(1,1,1)
u⃗2=(0,1,1)u⃗2=(0,1,1)
Step 2
The first orthogonal vector is the first vector in the given set of vectors.
v⃗1=u⃗1=(1,1,1)v⃗1=u⃗1=(1,1,1)
Step 3
Use the formula to find the other orthogonal vectors.
v⃗k=u⃗k-k-1∑i=1projv⃗i(u⃗k)v⃗k=u⃗k−k−1∑i=1projv⃗i(u⃗k)
Step 4
Step 4.1
Use the formula to find v⃗2v⃗2.
v⃗2=u⃗2-projv⃗1(u⃗2)v⃗2=u⃗2−projv⃗1(u⃗2)
Step 4.2
Substitute (0,1,1)(0,1,1) for u⃗2u⃗2.
v⃗2=(0,1,1)-projv⃗1(u⃗2)v⃗2=(0,1,1)−projv⃗1(u⃗2)
Step 4.3
Find projv⃗1(u⃗2)projv⃗1(u⃗2).
Step 4.3.1
Find the dot product.
Step 4.3.1.1
The dot product of two vectors is the sum of the products of the their components.
u⃗2⋅v⃗1=0⋅1+1⋅1+1⋅1u⃗2⋅v⃗1=0⋅1+1⋅1+1⋅1
Step 4.3.1.2
Simplify.
Step 4.3.1.2.1
Simplify each term.
Step 4.3.1.2.1.1
Multiply 00 by 11.
u⃗2⋅v⃗1=0+1⋅1+1⋅1u⃗2⋅v⃗1=0+1⋅1+1⋅1
Step 4.3.1.2.1.2
Multiply 11 by 11.
u⃗2⋅v⃗1=0+1+1⋅1u⃗2⋅v⃗1=0+1+1⋅1
Step 4.3.1.2.1.3
Multiply 11 by 11.
u⃗2⋅v⃗1=0+1+1u⃗2⋅v⃗1=0+1+1
u⃗2⋅v⃗1=0+1+1u⃗2⋅v⃗1=0+1+1
Step 4.3.1.2.2
Add 00 and 11.
u⃗2⋅v⃗1=1+1u⃗2⋅v⃗1=1+1
Step 4.3.1.2.3
Add 11 and 11.
u⃗2⋅v⃗1=2u⃗2⋅v⃗1=2
u⃗2⋅v⃗1=2u⃗2⋅v⃗1=2
u⃗2⋅v⃗1=2u⃗2⋅v⃗1=2
Step 4.3.2
Find the norm of v⃗1=(1,1,1)v⃗1=(1,1,1).
Step 4.3.2.1
The norm is the square root of the sum of squares of each element in the vector.
||v⃗1||=√12+12+12||v⃗1||=√12+12+12
Step 4.3.2.2
Simplify.
Step 4.3.2.2.1
One to any power is one.
||v⃗1||=√1+12+12||v⃗1||=√1+12+12
Step 4.3.2.2.2
One to any power is one.
||v⃗1||=√1+1+12||v⃗1||=√1+1+12
Step 4.3.2.2.3
One to any power is one.
||v⃗1||=√1+1+1||v⃗1||=√1+1+1
Step 4.3.2.2.4
Add 11 and 11.
||v⃗1||=√2+1||v⃗1||=√2+1
Step 4.3.2.2.5
Add 22 and 11.
||v⃗1||=√3||v⃗1||=√3
||v⃗1||=√3||v⃗1||=√3
||v⃗1||=√3||v⃗1||=√3
Step 4.3.3
Find the projection of u⃗2u⃗2 onto v⃗1v⃗1 using the projection formula.
projv⃗1(u⃗2)=u⃗2⋅v⃗1||v⃗1||2×v⃗1projv⃗1(u⃗2)=u⃗2⋅v⃗1||v⃗1||2×v⃗1
Step 4.3.4
Substitute 22 for u⃗2⋅v⃗1u⃗2⋅v⃗1.
projv⃗1(u⃗2)=2||v⃗1||2×v⃗1projv⃗1(u⃗2)=2||v⃗1||2×v⃗1
Step 4.3.5
Substitute √3√3 for ||v⃗1||||v⃗1||.
projv⃗1(u⃗2)=2√32×v⃗1projv⃗1(u⃗2)=2√32×v⃗1
Step 4.3.6
Substitute (1,1,1)(1,1,1) for v⃗1v⃗1.
projv⃗1(u⃗2)=2√32×(1,1,1)projv⃗1(u⃗2)=2√32×(1,1,1)
Step 4.3.7
Simplify the right side.
Step 4.3.7.1
Rewrite √32√32 as 33.
Step 4.3.7.1.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
projv⃗1(u⃗2)=2(312)2×(1,1,1)projv⃗1(u⃗2)=2(312)2×(1,1,1)
Step 4.3.7.1.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
projv⃗1(u⃗2)=2312⋅2×(1,1,1)projv⃗1(u⃗2)=2312⋅2×(1,1,1)
Step 4.3.7.1.3
Combine 1212 and 22.
projv⃗1(u⃗2)=2322×(1,1,1)projv⃗1(u⃗2)=2322×(1,1,1)
Step 4.3.7.1.4
Cancel the common factor of 22.
Step 4.3.7.1.4.1
Cancel the common factor.
projv⃗1(u⃗2)=2322×(1,1,1)
Step 4.3.7.1.4.2
Rewrite the expression.
projv⃗1(u⃗2)=231×(1,1,1)
projv⃗1(u⃗2)=231×(1,1,1)
Step 4.3.7.1.5
Evaluate the exponent.
projv⃗1(u⃗2)=23×(1,1,1)
projv⃗1(u⃗2)=23×(1,1,1)
Step 4.3.7.2
Multiply 23 by each element of the matrix.
projv⃗1(u⃗2)=(23⋅1,23⋅1,23⋅1)
Step 4.3.7.3
Simplify each element in the matrix.
Step 4.3.7.3.1
Multiply 23 by 1.
projv⃗1(u⃗2)=(23,23⋅1,23⋅1)
Step 4.3.7.3.2
Multiply 23 by 1.
projv⃗1(u⃗2)=(23,23,23⋅1)
Step 4.3.7.3.3
Multiply 23 by 1.
projv⃗1(u⃗2)=(23,23,23)
projv⃗1(u⃗2)=(23,23,23)
projv⃗1(u⃗2)=(23,23,23)
projv⃗1(u⃗2)=(23,23,23)
Step 4.4
Substitute the projection.
v⃗2=(0,1,1)-(23,23,23)
Step 4.5
Simplify.
Step 4.5.1
Combine each component of the vectors.
(0-(23),1-(23),1-(23))
Step 4.5.2
Subtract 23 from 0.
(-23,1-(23),1-(23))
Step 4.5.3
Write 1 as a fraction with a common denominator.
(-23,33-23,1-(23))
Step 4.5.4
Combine the numerators over the common denominator.
(-23,3-23,1-(23))
Step 4.5.5
Subtract 2 from 3.
(-23,13,1-(23))
Step 4.5.6
Write 1 as a fraction with a common denominator.
(-23,13,33-23)
Step 4.5.7
Combine the numerators over the common denominator.
(-23,13,3-23)
Step 4.5.8
Subtract 2 from 3.
v⃗2=(-23,13,13)
v⃗2=(-23,13,13)
v⃗2=(-23,13,13)
Step 5
Find the orthonormal basis by dividing each orthogonal vector by its norm.
Span{v⃗1||v⃗1||,v⃗2||v⃗2||}
Step 6
Step 6.1
To find a unit vector in the same direction as a vector v⃗, divide by the norm of v⃗.
v⃗|v⃗|
Step 6.2
The norm is the square root of the sum of squares of each element in the vector.
√12+12+12
Step 6.3
Simplify.
Step 6.3.1
One to any power is one.
√1+12+12
Step 6.3.2
One to any power is one.
√1+1+12
Step 6.3.3
One to any power is one.
√1+1+1
Step 6.3.4
Add 1 and 1.
√2+1
Step 6.3.5
Add 2 and 1.
√3
√3
Step 6.4
Divide the vector by its norm.
(1,1,1)√3
Step 6.5
Divide each element in the vector by √3.
(1√3,1√3,1√3)
(1√3,1√3,1√3)
Step 7
Step 7.1
To find a unit vector in the same direction as a vector v⃗, divide by the norm of v⃗.
v⃗|v⃗|
Step 7.2
The norm is the square root of the sum of squares of each element in the vector.
√(-23)2+(13)2+(13)2
Step 7.3
Simplify.
Step 7.3.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 7.3.1.1
Apply the product rule to -23.
√(-1)2(23)2+(13)2+(13)2
Step 7.3.1.2
Apply the product rule to 23.
√(-1)22232+(13)2+(13)2
√(-1)22232+(13)2+(13)2
Step 7.3.2
Raise -1 to the power of 2.
√12232+(13)2+(13)2
Step 7.3.3
Multiply 2232 by 1.
√2232+(13)2+(13)2
Step 7.3.4
Raise 2 to the power of 2.
√432+(13)2+(13)2
Step 7.3.5
Raise 3 to the power of 2.
√49+(13)2+(13)2
Step 7.3.6
Apply the product rule to 13.
√49+1232+(13)2
Step 7.3.7
One to any power is one.
√49+132+(13)2
Step 7.3.8
Raise 3 to the power of 2.
√49+19+(13)2
Step 7.3.9
Apply the product rule to 13.
√49+19+1232
Step 7.3.10
One to any power is one.
√49+19+132
Step 7.3.11
Raise 3 to the power of 2.
√49+19+19
Step 7.3.12
Combine the numerators over the common denominator.
√4+19+19
Step 7.3.13
Add 4 and 1.
√59+19
Step 7.3.14
Combine the numerators over the common denominator.
√5+19
Step 7.3.15
Add 5 and 1.
√69
Step 7.3.16
Cancel the common factor of 6 and 9.
Step 7.3.16.1
Factor 3 out of 6.
√3(2)9
Step 7.3.16.2
Cancel the common factors.
Step 7.3.16.2.1
Factor 3 out of 9.
√3⋅23⋅3
Step 7.3.16.2.2
Cancel the common factor.
√3⋅23⋅3
Step 7.3.16.2.3
Rewrite the expression.
√23
√23
√23
Step 7.3.17
Rewrite √23 as √2√3.
√2√3
√2√3
Step 7.4
Divide the vector by its norm.
(-23,13,13)√2√3
Step 7.5
Divide each element in the vector by √2√3.
(-23√2√3,13√2√3,13√2√3)
Step 7.6
Simplify.
Step 7.6.1
Multiply the numerator by the reciprocal of the denominator.
(-23⋅√3√2,13√2√3,13√2√3)
Step 7.6.2
Multiply √3√2 by 23.
(-√3⋅2√2⋅3,13√2√3,13√2√3)
Step 7.6.3
Move 2 to the left of √3.
(-2√3√2⋅3,13√2√3,13√2√3)
Step 7.6.4
Move 3 to the left of √2.
(-2√33√2,13√2√3,13√2√3)
Step 7.6.5
Multiply the numerator by the reciprocal of the denominator.
(-2√33√2,13⋅√3√2,13√2√3)
Step 7.6.6
Multiply 13 by √3√2.
(-2√33√2,√33√2,13√2√3)
Step 7.6.7
Multiply the numerator by the reciprocal of the denominator.
(-2√33√2,√33√2,13⋅√3√2)
Step 7.6.8
Multiply 13 by √3√2.
(-2√33√2,√33√2,√33√2)
(-2√33√2,√33√2,√33√2)
(-2√33√2,√33√2,√33√2)
Step 8
Substitute the known values.
Span{(1√3,1√3,1√3),(-2√33√2,√33√2,√33√2)}