Trigonometry Examples

Find an Orthonormal Basis by Gram-Schmidt Method
S={(1,1,1),(0,1,1)}S={(1,1,1),(0,1,1)}
Step 1
Assign a name for each vector.
u⃗1=(1,1,1)u⃗1=(1,1,1)
u⃗2=(0,1,1)u⃗2=(0,1,1)
Step 2
The first orthogonal vector is the first vector in the given set of vectors.
v⃗1=u⃗1=(1,1,1)v⃗1=u⃗1=(1,1,1)
Step 3
Use the formula to find the other orthogonal vectors.
v⃗k=u⃗k-k-1i=1projv⃗i(u⃗k)v⃗k=u⃗kk1i=1projv⃗i(u⃗k)
Step 4
Find the orthogonal vector v⃗2v⃗2.
Tap for more steps...
Step 4.1
Use the formula to find v⃗2v⃗2.
v⃗2=u⃗2-projv⃗1(u⃗2)v⃗2=u⃗2projv⃗1(u⃗2)
Step 4.2
Substitute (0,1,1)(0,1,1) for u⃗2u⃗2.
v⃗2=(0,1,1)-projv⃗1(u⃗2)v⃗2=(0,1,1)projv⃗1(u⃗2)
Step 4.3
Find projv⃗1(u⃗2)projv⃗1(u⃗2).
Tap for more steps...
Step 4.3.1
Find the dot product.
Tap for more steps...
Step 4.3.1.1
The dot product of two vectors is the sum of the products of the their components.
u⃗2v⃗1=01+11+11u⃗2v⃗1=01+11+11
Step 4.3.1.2
Simplify.
Tap for more steps...
Step 4.3.1.2.1
Simplify each term.
Tap for more steps...
Step 4.3.1.2.1.1
Multiply 00 by 11.
u⃗2v⃗1=0+11+11u⃗2v⃗1=0+11+11
Step 4.3.1.2.1.2
Multiply 11 by 11.
u⃗2v⃗1=0+1+11u⃗2v⃗1=0+1+11
Step 4.3.1.2.1.3
Multiply 11 by 11.
u⃗2v⃗1=0+1+1u⃗2v⃗1=0+1+1
u⃗2v⃗1=0+1+1u⃗2v⃗1=0+1+1
Step 4.3.1.2.2
Add 00 and 11.
u⃗2v⃗1=1+1u⃗2v⃗1=1+1
Step 4.3.1.2.3
Add 11 and 11.
u⃗2v⃗1=2u⃗2v⃗1=2
u⃗2v⃗1=2u⃗2v⃗1=2
u⃗2v⃗1=2u⃗2v⃗1=2
Step 4.3.2
Find the norm of v⃗1=(1,1,1)v⃗1=(1,1,1).
Tap for more steps...
Step 4.3.2.1
The norm is the square root of the sum of squares of each element in the vector.
||v⃗1||=12+12+12||v⃗1||=12+12+12
Step 4.3.2.2
Simplify.
Tap for more steps...
Step 4.3.2.2.1
One to any power is one.
||v⃗1||=1+12+12||v⃗1||=1+12+12
Step 4.3.2.2.2
One to any power is one.
||v⃗1||=1+1+12||v⃗1||=1+1+12
Step 4.3.2.2.3
One to any power is one.
||v⃗1||=1+1+1||v⃗1||=1+1+1
Step 4.3.2.2.4
Add 11 and 11.
||v⃗1||=2+1||v⃗1||=2+1
Step 4.3.2.2.5
Add 22 and 11.
||v⃗1||=3||v⃗1||=3
||v⃗1||=3||v⃗1||=3
||v⃗1||=3||v⃗1||=3
Step 4.3.3
Find the projection of u⃗2u⃗2 onto v⃗1v⃗1 using the projection formula.
projv⃗1(u⃗2)=u⃗2v⃗1||v⃗1||2×v⃗1projv⃗1(u⃗2)=u⃗2v⃗1||v⃗1||2×v⃗1
Step 4.3.4
Substitute 22 for u⃗2v⃗1u⃗2v⃗1.
projv⃗1(u⃗2)=2||v⃗1||2×v⃗1projv⃗1(u⃗2)=2||v⃗1||2×v⃗1
Step 4.3.5
Substitute 33 for ||v⃗1||||v⃗1||.
projv⃗1(u⃗2)=232×v⃗1projv⃗1(u⃗2)=232×v⃗1
Step 4.3.6
Substitute (1,1,1)(1,1,1) for v⃗1v⃗1.
projv⃗1(u⃗2)=232×(1,1,1)projv⃗1(u⃗2)=232×(1,1,1)
Step 4.3.7
Simplify the right side.
Tap for more steps...
Step 4.3.7.1
Rewrite 3232 as 33.
Tap for more steps...
Step 4.3.7.1.1
Use nax=axnnax=axn to rewrite 33 as 312312.
projv⃗1(u⃗2)=2(312)2×(1,1,1)projv⃗1(u⃗2)=2(312)2×(1,1,1)
Step 4.3.7.1.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
projv⃗1(u⃗2)=23122×(1,1,1)projv⃗1(u⃗2)=23122×(1,1,1)
Step 4.3.7.1.3
Combine 1212 and 22.
projv⃗1(u⃗2)=2322×(1,1,1)projv⃗1(u⃗2)=2322×(1,1,1)
Step 4.3.7.1.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.3.7.1.4.1
Cancel the common factor.
projv⃗1(u⃗2)=2322×(1,1,1)
Step 4.3.7.1.4.2
Rewrite the expression.
projv⃗1(u⃗2)=231×(1,1,1)
projv⃗1(u⃗2)=231×(1,1,1)
Step 4.3.7.1.5
Evaluate the exponent.
projv⃗1(u⃗2)=23×(1,1,1)
projv⃗1(u⃗2)=23×(1,1,1)
Step 4.3.7.2
Multiply 23 by each element of the matrix.
projv⃗1(u⃗2)=(231,231,231)
Step 4.3.7.3
Simplify each element in the matrix.
Tap for more steps...
Step 4.3.7.3.1
Multiply 23 by 1.
projv⃗1(u⃗2)=(23,231,231)
Step 4.3.7.3.2
Multiply 23 by 1.
projv⃗1(u⃗2)=(23,23,231)
Step 4.3.7.3.3
Multiply 23 by 1.
projv⃗1(u⃗2)=(23,23,23)
projv⃗1(u⃗2)=(23,23,23)
projv⃗1(u⃗2)=(23,23,23)
projv⃗1(u⃗2)=(23,23,23)
Step 4.4
Substitute the projection.
v⃗2=(0,1,1)-(23,23,23)
Step 4.5
Simplify.
Tap for more steps...
Step 4.5.1
Combine each component of the vectors.
(0-(23),1-(23),1-(23))
Step 4.5.2
Subtract 23 from 0.
(-23,1-(23),1-(23))
Step 4.5.3
Write 1 as a fraction with a common denominator.
(-23,33-23,1-(23))
Step 4.5.4
Combine the numerators over the common denominator.
(-23,3-23,1-(23))
Step 4.5.5
Subtract 2 from 3.
(-23,13,1-(23))
Step 4.5.6
Write 1 as a fraction with a common denominator.
(-23,13,33-23)
Step 4.5.7
Combine the numerators over the common denominator.
(-23,13,3-23)
Step 4.5.8
Subtract 2 from 3.
v⃗2=(-23,13,13)
v⃗2=(-23,13,13)
v⃗2=(-23,13,13)
Step 5
Find the orthonormal basis by dividing each orthogonal vector by its norm.
Span{v⃗1||v⃗1||,v⃗2||v⃗2||}
Step 6
Find the unit vector v⃗1||v⃗1|| where v⃗1=(1,1,1).
Tap for more steps...
Step 6.1
To find a unit vector in the same direction as a vector v⃗, divide by the norm of v⃗.
v⃗|v⃗|
Step 6.2
The norm is the square root of the sum of squares of each element in the vector.
12+12+12
Step 6.3
Simplify.
Tap for more steps...
Step 6.3.1
One to any power is one.
1+12+12
Step 6.3.2
One to any power is one.
1+1+12
Step 6.3.3
One to any power is one.
1+1+1
Step 6.3.4
Add 1 and 1.
2+1
Step 6.3.5
Add 2 and 1.
3
3
Step 6.4
Divide the vector by its norm.
(1,1,1)3
Step 6.5
Divide each element in the vector by 3.
(13,13,13)
(13,13,13)
Step 7
Find the unit vector v⃗2||v⃗2|| where v⃗2=(-23,13,13).
Tap for more steps...
Step 7.1
To find a unit vector in the same direction as a vector v⃗, divide by the norm of v⃗.
v⃗|v⃗|
Step 7.2
The norm is the square root of the sum of squares of each element in the vector.
(-23)2+(13)2+(13)2
Step 7.3
Simplify.
Tap for more steps...
Step 7.3.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 7.3.1.1
Apply the product rule to -23.
(-1)2(23)2+(13)2+(13)2
Step 7.3.1.2
Apply the product rule to 23.
(-1)22232+(13)2+(13)2
(-1)22232+(13)2+(13)2
Step 7.3.2
Raise -1 to the power of 2.
12232+(13)2+(13)2
Step 7.3.3
Multiply 2232 by 1.
2232+(13)2+(13)2
Step 7.3.4
Raise 2 to the power of 2.
432+(13)2+(13)2
Step 7.3.5
Raise 3 to the power of 2.
49+(13)2+(13)2
Step 7.3.6
Apply the product rule to 13.
49+1232+(13)2
Step 7.3.7
One to any power is one.
49+132+(13)2
Step 7.3.8
Raise 3 to the power of 2.
49+19+(13)2
Step 7.3.9
Apply the product rule to 13.
49+19+1232
Step 7.3.10
One to any power is one.
49+19+132
Step 7.3.11
Raise 3 to the power of 2.
49+19+19
Step 7.3.12
Combine the numerators over the common denominator.
4+19+19
Step 7.3.13
Add 4 and 1.
59+19
Step 7.3.14
Combine the numerators over the common denominator.
5+19
Step 7.3.15
Add 5 and 1.
69
Step 7.3.16
Cancel the common factor of 6 and 9.
Tap for more steps...
Step 7.3.16.1
Factor 3 out of 6.
3(2)9
Step 7.3.16.2
Cancel the common factors.
Tap for more steps...
Step 7.3.16.2.1
Factor 3 out of 9.
3233
Step 7.3.16.2.2
Cancel the common factor.
3233
Step 7.3.16.2.3
Rewrite the expression.
23
23
23
Step 7.3.17
Rewrite 23 as 23.
23
23
Step 7.4
Divide the vector by its norm.
(-23,13,13)23
Step 7.5
Divide each element in the vector by 23.
(-2323,1323,1323)
Step 7.6
Simplify.
Tap for more steps...
Step 7.6.1
Multiply the numerator by the reciprocal of the denominator.
(-2332,1323,1323)
Step 7.6.2
Multiply 32 by 23.
(-3223,1323,1323)
Step 7.6.3
Move 2 to the left of 3.
(-2323,1323,1323)
Step 7.6.4
Move 3 to the left of 2.
(-2332,1323,1323)
Step 7.6.5
Multiply the numerator by the reciprocal of the denominator.
(-2332,1332,1323)
Step 7.6.6
Multiply 13 by 32.
(-2332,332,1323)
Step 7.6.7
Multiply the numerator by the reciprocal of the denominator.
(-2332,332,1332)
Step 7.6.8
Multiply 13 by 32.
(-2332,332,332)
(-2332,332,332)
(-2332,332,332)
Step 8
Substitute the known values.
Span{(13,13,13),(-2332,332,332)}
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay