Trigonometry Examples

tan(x)(sin(x)+cot(x)cos(x))tan(x)(sin(x)+cot(x)cos(x))
Step 1
Rewrite tan(x)tan(x) in terms of sines and cosines.
sin(x)cos(x)(sin(x)+cot(x)cos(x))sin(x)cos(x)(sin(x)+cot(x)cos(x))
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Rewrite cot(x)cot(x) in terms of sines and cosines.
sin(x)cos(x)(sin(x)+cos(x)sin(x)cos(x))sin(x)cos(x)(sin(x)+cos(x)sin(x)cos(x))
Step 2.2
Multiply cos(x)sin(x)cos(x)cos(x)sin(x)cos(x).
Tap for more steps...
Step 2.2.1
Combine cos(x)sin(x)cos(x)sin(x) and cos(x)cos(x).
sin(x)cos(x)(sin(x)+cos(x)cos(x)sin(x))sin(x)cos(x)(sin(x)+cos(x)cos(x)sin(x))
Step 2.2.2
Raise cos(x)cos(x) to the power of 11.
sin(x)cos(x)(sin(x)+cos1(x)cos(x)sin(x))sin(x)cos(x)(sin(x)+cos1(x)cos(x)sin(x))
Step 2.2.3
Raise cos(x)cos(x) to the power of 11.
sin(x)cos(x)(sin(x)+cos1(x)cos1(x)sin(x))sin(x)cos(x)(sin(x)+cos1(x)cos1(x)sin(x))
Step 2.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin(x)cos(x)(sin(x)+cos(x)1+1sin(x))sin(x)cos(x)(sin(x)+cos(x)1+1sin(x))
Step 2.2.5
Add 11 and 11.
sin(x)cos(x)(sin(x)+cos2(x)sin(x))sin(x)cos(x)(sin(x)+cos2(x)sin(x))
sin(x)cos(x)(sin(x)+cos2(x)sin(x))sin(x)cos(x)(sin(x)+cos2(x)sin(x))
sin(x)cos(x)(sin(x)+cos2(x)sin(x))sin(x)cos(x)(sin(x)+cos2(x)sin(x))
Step 3
Apply the distributive property.
sin(x)cos(x)sin(x)+sin(x)cos(x)cos2(x)sin(x)sin(x)cos(x)sin(x)+sin(x)cos(x)cos2(x)sin(x)
Step 4
Multiply sin(x)cos(x)sin(x)sin(x)cos(x)sin(x).
Tap for more steps...
Step 4.1
Combine sin(x)cos(x)sin(x)cos(x) and sin(x)sin(x).
sin(x)sin(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)sin(x)sin(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)
Step 4.2
Raise sin(x)sin(x) to the power of 11.
sin1(x)sin(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)sin1(x)sin(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)
Step 4.3
Raise sin(x)sin(x) to the power of 11.
sin1(x)sin1(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)sin1(x)sin1(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)
Step 4.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin(x)1+1cos(x)+sin(x)cos(x)cos2(x)sin(x)sin(x)1+1cos(x)+sin(x)cos(x)cos2(x)sin(x)
Step 4.5
Add 11 and 11.
sin2(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)sin2(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)
sin2(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)sin2(x)cos(x)+sin(x)cos(x)cos2(x)sin(x)
Step 5
Combine.
sin2(x)cos(x)+sin(x)cos2(x)cos(x)sin(x)sin2(x)cos(x)+sin(x)cos2(x)cos(x)sin(x)
Step 6
Simplify each term.
Tap for more steps...
Step 6.1
Cancel the common factor of sin(x)sin(x).
Tap for more steps...
Step 6.1.1
Cancel the common factor.
sin2(x)cos(x)+sin(x)cos2(x)cos(x)sin(x)
Step 6.1.2
Rewrite the expression.
sin2(x)cos(x)+cos2(x)cos(x)
sin2(x)cos(x)+cos2(x)cos(x)
Step 6.2
Cancel the common factor of cos2(x) and cos(x).
Tap for more steps...
Step 6.2.1
Factor cos(x) out of cos2(x).
sin2(x)cos(x)+cos(x)cos(x)cos(x)
Step 6.2.2
Cancel the common factors.
Tap for more steps...
Step 6.2.2.1
Multiply by 1.
sin2(x)cos(x)+cos(x)cos(x)cos(x)1
Step 6.2.2.2
Cancel the common factor.
sin2(x)cos(x)+cos(x)cos(x)cos(x)1
Step 6.2.2.3
Rewrite the expression.
sin2(x)cos(x)+cos(x)1
Step 6.2.2.4
Divide cos(x) by 1.
sin2(x)cos(x)+cos(x)
sin2(x)cos(x)+cos(x)
sin2(x)cos(x)+cos(x)
sin2(x)cos(x)+cos(x)
Step 7
Simplify each term.
Tap for more steps...
Step 7.1
Factor sin(x) out of sin2(x).
sin(x)sin(x)cos(x)+cos(x)
Step 7.2
Separate fractions.
sin(x)1sin(x)cos(x)+cos(x)
Step 7.3
Convert from sin(x)cos(x) to tan(x).
sin(x)1tan(x)+cos(x)
Step 7.4
Divide sin(x) by 1.
sin(x)tan(x)+cos(x)
sin(x)tan(x)+cos(x)
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay