Trigonometry Examples
tan(2x)tan(2x)
Step 1
Apply the tangent double-angle identity.
2tan(x)1-tan2(x)2tan(x)1−tan2(x)
Step 2
Step 2.1
Rewrite 11 as 1212.
2tan(x)12-tan2(x)2tan(x)12−tan2(x)
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=1a=1 and b=tan(x)b=tan(x).
2tan(x)(1+tan(x))(1-tan(x))2tan(x)(1+tan(x))(1−tan(x))
2tan(x)(1+tan(x))(1-tan(x))2tan(x)(1+tan(x))(1−tan(x))