Trigonometry Examples

sin(5x)sin(5x)
Step 1
A good method to expand sin(5x)sin(5x) is by using De Moivre's theorem (r(cos(x)+isin(x))n=rn(cos(nx)+isin(nx)))(r(cos(x)+isin(x))n=rn(cos(nx)+isin(nx))). When r=1r=1, cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n.
cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n
Step 2
Expand the right hand side of cos(nx)+isin(nx)=(cos(x)+isin(x))ncos(nx)+isin(nx)=(cos(x)+isin(x))n using the binomial theorem.
Expand: (cos(x)+isin(x))5(cos(x)+isin(x))5
Step 3
Use the Binomial Theorem.
cos5(x)+5cos4(x)(isin(x))+10cos3(x)(isin(x))2+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)(isin(x))+10cos3(x)(isin(x))2+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Apply the product rule to isin(x)isin(x).
cos5(x)+5cos4(x)isin(x)+10cos3(x)(i2sin2(x))+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)+10cos3(x)(i2sin2(x))+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.2
Rewrite using the commutative property of multiplication.
cos5(x)+5cos4(x)isin(x)+10i2cos3(x)sin2(x)+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)+10i2cos3(x)sin2(x)+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.3
Rewrite i2i2 as -11.
cos5(x)+5cos4(x)isin(x)+10-1cos3(x)sin2(x)+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)+101cos3(x)sin2(x)+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.4
Multiply 1010 by -11.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)10cos3(x)sin2(x)+10cos2(x)(isin(x))3+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.5
Apply the product rule to isin(x)isin(x).
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)+10cos2(x)(i3sin3(x))+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)10cos3(x)sin2(x)+10cos2(x)(i3sin3(x))+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.6
Rewrite using the commutative property of multiplication.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)+10i3cos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)10cos3(x)sin2(x)+10i3cos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.7
Factor out i2i2.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)+10(i2i)cos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)10cos3(x)sin2(x)+10(i2i)cos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.8
Rewrite i2i2 as -11.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)+10(-1i)cos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)10cos3(x)sin2(x)+10(1i)cos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.9
Rewrite -1i1i as -ii.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)+10(-i)cos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)10cos3(x)sin2(x)+10(i)cos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.10
Multiply -11 by 1010.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5cos5(x)+5cos4(x)isin(x)10cos3(x)sin2(x)10icos2(x)sin3(x)+5cos(x)(isin(x))4+(isin(x))5
Step 4.1.11
Apply the product rule to isin(x)isin(x).
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)(i4sin4(x))+(isin(x))5cos5(x)+5cos4(x)isin(x)10cos3(x)sin2(x)10icos2(x)sin3(x)+5cos(x)(i4sin4(x))+(isin(x))5
Step 4.1.12
Rewrite i4 as 1.
Tap for more steps...
Step 4.1.12.1
Rewrite i4 as (i2)2.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)((i2)2sin4(x))+(isin(x))5
Step 4.1.12.2
Rewrite i2 as -1.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)((-1)2sin4(x))+(isin(x))5
Step 4.1.12.3
Raise -1 to the power of 2.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)(1sin4(x))+(isin(x))5
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)(1sin4(x))+(isin(x))5
Step 4.1.13
Multiply sin4(x) by 1.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+(isin(x))5
Step 4.1.14
Apply the product rule to isin(x).
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+i5sin5(x)
Step 4.1.15
Factor out i4.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+i4isin5(x)
Step 4.1.16
Rewrite i4 as 1.
Tap for more steps...
Step 4.1.16.1
Rewrite i4 as (i2)2.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+(i2)2isin5(x)
Step 4.1.16.2
Rewrite i2 as -1.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+(-1)2isin5(x)
Step 4.1.16.3
Raise -1 to the power of 2.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+1isin5(x)
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+1isin5(x)
Step 4.1.17
Multiply i by 1.
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+isin5(x)
cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+isin5(x)
Step 4.2
Reorder factors in cos5(x)+5cos4(x)isin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+isin5(x).
cos5(x)+5icos4(x)sin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+isin5(x)
cos5(x)+5icos4(x)sin(x)-10cos3(x)sin2(x)-10icos2(x)sin3(x)+5cos(x)sin4(x)+isin5(x)
Step 5
Take out the expressions with the imaginary part, which are equal to sin(5x). Remove the imaginary number i.
sin(5x)=5cos4(x)sin(x)-10cos2(x)sin3(x)+sin5(x)
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay