Trigonometry Examples
cos(6x)cos(6x)
Step 1
A good method to expand cos(6x)cos(6x) is by using De Moivre's theorem (r(cos(x)+i⋅sin(x))n=rn(cos(nx)+i⋅sin(nx)))(r(cos(x)+i⋅sin(x))n=rn(cos(nx)+i⋅sin(nx))). When r=1r=1, cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n.
cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n
Step 2
Expand the right hand side of cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n using the binomial theorem.
Expand: (cos(x)+i⋅sin(x))6(cos(x)+i⋅sin(x))6
Step 3
Use the Binomial Theorem.
cos6(x)+6cos5(x)(isin(x))+15cos4(x)(isin(x))2+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)(isin(x))+15cos4(x)(isin(x))2+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Apply the product rule to isin(x)isin(x).
cos6(x)+6cos5(x)isin(x)+15cos4(x)(i2sin2(x))+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)+15cos4(x)(i2sin2(x))+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.2
Rewrite using the commutative property of multiplication.
cos6(x)+6cos5(x)isin(x)+15⋅i2cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)+15⋅i2cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.3
Rewrite i2i2 as -1−1.
cos6(x)+6cos5(x)isin(x)+15⋅-1cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)+15⋅−1cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.4
Multiply 1515 by -1−1.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.5
Apply the product rule to isin(x)isin(x).
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20cos3(x)(i3sin3(x))+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)+20cos3(x)(i3sin3(x))+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.6
Rewrite using the commutative property of multiplication.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20⋅i3cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)+20⋅i3cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.7
Factor out i2i2.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20⋅(i2⋅i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)+20⋅(i2⋅i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.8
Rewrite i2i2 as -1−1.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20⋅(-1⋅i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)+20⋅(−1⋅i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.9
Rewrite -1i−1i as -i−i.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20⋅(-i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)+20⋅(−i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.10
Multiply -1−1 by 2020.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.11
Apply the product rule to isin(x)isin(x).
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)(i4sin4(x))+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)(i4sin4(x))+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.12
Rewrite using the commutative property of multiplication.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅i4cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15⋅i4cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.13
Rewrite i4i4 as 11.
Step 4.1.13.1
Rewrite i4i4 as (i2)2(i2)2.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅(i2)2cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15⋅(i2)2cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.13.2
Rewrite i2i2 as -1−1.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅(-1)2cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15⋅(−1)2cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.13.3
Raise -1−1 to the power of 22.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅1cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15⋅1cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅1cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15⋅1cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.14
Multiply 1515 by 11.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
Step 4.1.15
Apply the product rule to isin(x)isin(x).
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(i5sin5(x))+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(i5sin5(x))+(isin(x))6
Step 4.1.16
Factor out i4i4.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(i4isin5(x))+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(i4isin5(x))+(isin(x))6
Step 4.1.17
Rewrite i4i4 as 11.
Step 4.1.17.1
Rewrite i4i4 as (i2)2(i2)2.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)((i2)2isin5(x))+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)((i2)2isin5(x))+(isin(x))6
Step 4.1.17.2
Rewrite i2i2 as -1−1.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)((-1)2isin5(x))+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)((−1)2isin5(x))+(isin(x))6
Step 4.1.17.3
Raise -1−1 to the power of 22.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(1isin5(x))+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(1isin5(x))+(isin(x))6
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(1isin5(x))+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(1isin5(x))+(isin(x))6
Step 4.1.18
Multiply ii by 11.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(isin5(x))+(isin(x))6cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(isin5(x))+(isin(x))6
Step 4.1.19
Apply the product rule to isin(x)isin(x).
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+i6sin6(x)cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+i6sin6(x)
Step 4.1.20
Factor out i4i4.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+i4i2sin6(x)cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+i4i2sin6(x)
Step 4.1.21
Rewrite i4i4 as 11.
Step 4.1.21.1
Rewrite i4i4 as (i2)2(i2)2.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+(i2)2i2sin6(x)cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+(i2)2i2sin6(x)
Step 4.1.21.2
Rewrite i2i2 as -1−1.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+(-1)2i2sin6(x)cos6(x)+6cos5(x)isin(x)−15cos4(x)sin2(x)−20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+(−1)2i2sin6(x)
Step 4.1.21.3
Raise -1 to the power of 2.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+1i2sin6(x)
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+1i2sin6(x)
Step 4.1.22
Multiply i2 by 1.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+i2sin6(x)
Step 4.1.23
Rewrite i2 as -1.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)-1sin6(x)
Step 4.1.24
Rewrite -1sin6(x) as -sin6(x).
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)-sin6(x)
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)-sin6(x)
Step 4.2
Reorder factors in cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)-sin6(x).
cos6(x)+6icos5(x)sin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6icos(x)sin5(x)-sin6(x)
cos6(x)+6icos5(x)sin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6icos(x)sin5(x)-sin6(x)
Step 5
Take out the expressions with the imaginary part, which are equal to cos(6x). Remove the imaginary number i.
cos(6x)=cos6(x)-15cos4(x)sin2(x)+15cos2(x)sin4(x)-sin6(x)