Trigonometry Examples
sin(x)sin(x) , tan(x)=12tan(x)=12
Step 1
Use the definition of tangent to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
tan(x)=oppositeadjacenttan(x)=oppositeadjacent
Step 2
Find the hypotenuse of the unit circle triangle. Since the opposite and adjacent sides are known, use the Pythagorean theorem to find the remaining side.
Hypotenuse=√opposite2+adjacent2Hypotenuse=√opposite2+adjacent2
Step 3
Replace the known values in the equation.
Hypotenuse=√(1)2+(2)2Hypotenuse=√(1)2+(2)2
Step 4
Step 4.1
One to any power is one.
Hypotenuse =√1+(2)2=√1+(2)2
Step 4.2
Raise 22 to the power of 22.
Hypotenuse =√1+4=√1+4
Step 4.3
Add 11 and 44.
Hypotenuse =√5=√5
Hypotenuse =√5=√5
Step 5
Use the definition of sine to find the value of sin(x)sin(x).
sin(x)=oppositehypotenusesin(x)=oppositehypotenuse
Step 6
Substitute in the known values.
sin(x)=1√5sin(x)=1√5
Step 7
Step 7.1
Multiply 1√51√5 by √5√5√5√5.
sin(x)=1√5⋅√5√5sin(x)=1√5⋅√5√5
Step 7.2
Combine and simplify the denominator.
Step 7.2.1
Multiply 1√5 by √5√5.
sin(x)=√5√5√5
Step 7.2.2
Raise √5 to the power of 1.
sin(x)=√5√5√5
Step 7.2.3
Raise √5 to the power of 1.
sin(x)=√5√5√5
Step 7.2.4
Use the power rule aman=am+n to combine exponents.
sin(x)=√5√51+1
Step 7.2.5
Add 1 and 1.
sin(x)=√5√52
Step 7.2.6
Rewrite √52 as 5.
Step 7.2.6.1
Use n√ax=axn to rewrite √5 as 512.
sin(x)=√5(512)2
Step 7.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(x)=√5512⋅2
Step 7.2.6.3
Combine 12 and 2.
sin(x)=√5522
Step 7.2.6.4
Cancel the common factor of 2.
Step 7.2.6.4.1
Cancel the common factor.
sin(x)=√5522
Step 7.2.6.4.2
Rewrite the expression.
sin(x)=√55
sin(x)=√55
Step 7.2.6.5
Evaluate the exponent.
sin(x)=√55
sin(x)=√55
sin(x)=√55
sin(x)=√55
Step 8
The result can be shown in multiple forms.
Exact Form:
sin(x)=√55
Decimal Form:
sin(x)=0.44721359…