Trigonometry Examples
(3,8)(3,8)
Step 1
To find the sin(θ)sin(θ) between the x-axis and the line between the points (0,0)(0,0) and (3,8)(3,8), draw the triangle between the three points (0,0)(0,0), (3,0)(3,0), and (3,8)(3,8).
Opposite : 88
Adjacent : 33
Step 2
Step 2.1
Raise 33 to the power of 22.
√9+(8)2√9+(8)2
Step 2.2
Raise 88 to the power of 22.
√9+64√9+64
Step 2.3
Add 99 and 6464.
√73√73
√73√73
Step 3
sin(θ)=OppositeHypotenusesin(θ)=OppositeHypotenuse therefore sin(θ)=8√73sin(θ)=8√73.
8√738√73
Step 4
Step 4.1
Multiply 8√738√73 by √73√73√73√73.
sin(θ)=8√73⋅√73√73sin(θ)=8√73⋅√73√73
Step 4.2
Combine and simplify the denominator.
Step 4.2.1
Multiply 8√738√73 by √73√73√73√73.
sin(θ)=8√73√73√73sin(θ)=8√73√73√73
Step 4.2.2
Raise √73√73 to the power of 11.
sin(θ)=8√73√73√73sin(θ)=8√73√73√73
Step 4.2.3
Raise √73√73 to the power of 11.
sin(θ)=8√73√73√73sin(θ)=8√73√73√73
Step 4.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin(θ)=8√73√731+1sin(θ)=8√73√731+1
Step 4.2.5
Add 11 and 11.
sin(θ)=8√73√732sin(θ)=8√73√732
Step 4.2.6
Rewrite √732√732 as 7373.
Step 4.2.6.1
Use n√ax=axnn√ax=axn to rewrite √73√73 as 73127312.
sin(θ)=8√73(7312)2sin(θ)=8√73(7312)2
Step 4.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
sin(θ)=8√737312⋅2sin(θ)=8√737312⋅2
Step 4.2.6.3
Combine 1212 and 22.
sin(θ)=8√737322sin(θ)=8√737322
Step 4.2.6.4
Cancel the common factor of 22.
Step 4.2.6.4.1
Cancel the common factor.
sin(θ)=8√737322
Step 4.2.6.4.2
Rewrite the expression.
sin(θ)=8√7373
sin(θ)=8√7373
Step 4.2.6.5
Evaluate the exponent.
sin(θ)=8√7373
sin(θ)=8√7373
sin(θ)=8√7373
sin(θ)=8√7373
Step 5
Approximate the result.
sin(θ)=8√7373≈0.93632917