Trigonometry Examples

(3,8)(3,8)
Step 1
To find the sin(θ)sin(θ) between the x-axis and the line between the points (0,0)(0,0) and (3,8)(3,8), draw the triangle between the three points (0,0)(0,0), (3,0)(3,0), and (3,8)(3,8).
Opposite : 88
Adjacent : 33
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2c=a2+b2.
Tap for more steps...
Step 2.1
Raise 33 to the power of 22.
9+(8)29+(8)2
Step 2.2
Raise 88 to the power of 22.
9+649+64
Step 2.3
Add 99 and 6464.
7373
7373
Step 3
sin(θ)=OppositeHypotenusesin(θ)=OppositeHypotenuse therefore sin(θ)=873sin(θ)=873.
873873
Step 4
Simplify sin(θ)sin(θ).
Tap for more steps...
Step 4.1
Multiply 873873 by 73737373.
sin(θ)=8737373sin(θ)=8737373
Step 4.2
Combine and simplify the denominator.
Tap for more steps...
Step 4.2.1
Multiply 873873 by 73737373.
sin(θ)=8737373sin(θ)=8737373
Step 4.2.2
Raise 7373 to the power of 11.
sin(θ)=8737373sin(θ)=8737373
Step 4.2.3
Raise 7373 to the power of 11.
sin(θ)=8737373sin(θ)=8737373
Step 4.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin(θ)=873731+1sin(θ)=873731+1
Step 4.2.5
Add 11 and 11.
sin(θ)=873732sin(θ)=873732
Step 4.2.6
Rewrite 732732 as 7373.
Tap for more steps...
Step 4.2.6.1
Use nax=axnnax=axn to rewrite 7373 as 73127312.
sin(θ)=873(7312)2sin(θ)=873(7312)2
Step 4.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
sin(θ)=87373122sin(θ)=87373122
Step 4.2.6.3
Combine 1212 and 22.
sin(θ)=8737322sin(θ)=8737322
Step 4.2.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.2.6.4.1
Cancel the common factor.
sin(θ)=8737322
Step 4.2.6.4.2
Rewrite the expression.
sin(θ)=87373
sin(θ)=87373
Step 4.2.6.5
Evaluate the exponent.
sin(θ)=87373
sin(θ)=87373
sin(θ)=87373
sin(θ)=87373
Step 5
Approximate the result.
sin(θ)=873730.93632917
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay