Trigonometry Examples

(1,3)(1,3)
Step 1
To find the cos(θ)cos(θ) between the x-axis and the line between the points (0,0)(0,0) and (1,3)(1,3), draw the triangle between the three points (0,0)(0,0), (1,0)(1,0), and (1,3)(1,3).
Opposite : 33
Adjacent : 11
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2c=a2+b2.
Tap for more steps...
Step 2.1
One to any power is one.
1+(3)21+(3)2
Step 2.2
Raise 33 to the power of 22.
1+91+9
Step 2.3
Add 11 and 99.
1010
1010
Step 3
cos(θ)=AdjacentHypotenusecos(θ)=AdjacentHypotenuse therefore cos(θ)=110cos(θ)=110.
110110
Step 4
Simplify cos(θ)cos(θ).
Tap for more steps...
Step 4.1
Multiply 110110 by 10101010.
cos(θ)=1101010cos(θ)=1101010
Step 4.2
Combine and simplify the denominator.
Tap for more steps...
Step 4.2.1
Multiply 110110 by 10101010.
cos(θ)=101010cos(θ)=101010
Step 4.2.2
Raise 1010 to the power of 11.
cos(θ)=101010cos(θ)=101010
Step 4.2.3
Raise 1010 to the power of 11.
cos(θ)=101010cos(θ)=101010
Step 4.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
cos(θ)=10101+1cos(θ)=10101+1
Step 4.2.5
Add 11 and 11.
cos(θ)=10102cos(θ)=10102
Step 4.2.6
Rewrite 102102 as 1010.
Tap for more steps...
Step 4.2.6.1
Use nax=axnnax=axn to rewrite 1010 as 10121012.
cos(θ)=10(1012)2cos(θ)=10(1012)2
Step 4.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
cos(θ)=1010122cos(θ)=1010122
Step 4.2.6.3
Combine 1212 and 22.
cos(θ)=101022cos(θ)=101022
Step 4.2.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.2.6.4.1
Cancel the common factor.
cos(θ)=101022
Step 4.2.6.4.2
Rewrite the expression.
cos(θ)=1010
cos(θ)=1010
Step 4.2.6.5
Evaluate the exponent.
cos(θ)=1010
cos(θ)=1010
cos(θ)=1010
cos(θ)=1010
Step 5
Approximate the result.
cos(θ)=10100.31622776
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay