Trigonometry Examples
(1,3)(1,3)
Step 1
To find the cos(θ)cos(θ) between the x-axis and the line between the points (0,0)(0,0) and (1,3)(1,3), draw the triangle between the three points (0,0)(0,0), (1,0)(1,0), and (1,3)(1,3).
Opposite : 33
Adjacent : 11
Step 2
Step 2.1
One to any power is one.
√1+(3)2√1+(3)2
Step 2.2
Raise 33 to the power of 22.
√1+9√1+9
Step 2.3
Add 11 and 99.
√10√10
√10√10
Step 3
cos(θ)=AdjacentHypotenusecos(θ)=AdjacentHypotenuse therefore cos(θ)=1√10cos(θ)=1√10.
1√101√10
Step 4
Step 4.1
Multiply 1√101√10 by √10√10√10√10.
cos(θ)=1√10⋅√10√10cos(θ)=1√10⋅√10√10
Step 4.2
Combine and simplify the denominator.
Step 4.2.1
Multiply 1√101√10 by √10√10√10√10.
cos(θ)=√10√10√10cos(θ)=√10√10√10
Step 4.2.2
Raise √10√10 to the power of 11.
cos(θ)=√10√10√10cos(θ)=√10√10√10
Step 4.2.3
Raise √10√10 to the power of 11.
cos(θ)=√10√10√10cos(θ)=√10√10√10
Step 4.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
cos(θ)=√10√101+1cos(θ)=√10√101+1
Step 4.2.5
Add 11 and 11.
cos(θ)=√10√102cos(θ)=√10√102
Step 4.2.6
Rewrite √102√102 as 1010.
Step 4.2.6.1
Use n√ax=axnn√ax=axn to rewrite √10√10 as 10121012.
cos(θ)=√10(1012)2cos(θ)=√10(1012)2
Step 4.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
cos(θ)=√101012⋅2cos(θ)=√101012⋅2
Step 4.2.6.3
Combine 1212 and 22.
cos(θ)=√101022cos(θ)=√101022
Step 4.2.6.4
Cancel the common factor of 22.
Step 4.2.6.4.1
Cancel the common factor.
cos(θ)=√101022
Step 4.2.6.4.2
Rewrite the expression.
cos(θ)=√1010
cos(θ)=√1010
Step 4.2.6.5
Evaluate the exponent.
cos(θ)=√1010
cos(θ)=√1010
cos(θ)=√1010
cos(θ)=√1010
Step 5
Approximate the result.
cos(θ)=√1010≈0.31622776