Trigonometry Examples
(-2,9)(−2,9)
Step 1
To find the cos(θ)cos(θ) between the x-axis and the line between the points (0,0)(0,0) and (-2,9)(−2,9), draw the triangle between the three points (0,0)(0,0), (-2,0)(−2,0), and (-2,9)(−2,9).
Opposite : 99
Adjacent : -2−2
Step 2
Step 2.1
Raise -2−2 to the power of 22.
√4+(9)2√4+(9)2
Step 2.2
Raise 99 to the power of 22.
√4+81√4+81
Step 2.3
Add 44 and 8181.
√85√85
√85√85
Step 3
cos(θ)=AdjacentHypotenusecos(θ)=AdjacentHypotenuse therefore cos(θ)=-2√85cos(θ)=−2√85.
-2√85−2√85
Step 4
Step 4.1
Move the negative in front of the fraction.
cos(θ)=-2√85cos(θ)=−2√85
Step 4.2
Multiply 2√852√85 by √85√85√85√85.
cos(θ)=-(2√85⋅√85√85)
Step 4.3
Combine and simplify the denominator.
Step 4.3.1
Multiply 2√85 by √85√85.
cos(θ)=-2√85√85√85
Step 4.3.2
Raise √85 to the power of 1.
cos(θ)=-2√85√85√85
Step 4.3.3
Raise √85 to the power of 1.
cos(θ)=-2√85√85√85
Step 4.3.4
Use the power rule aman=am+n to combine exponents.
cos(θ)=-2√85√851+1
Step 4.3.5
Add 1 and 1.
cos(θ)=-2√85√852
Step 4.3.6
Rewrite √852 as 85.
Step 4.3.6.1
Use n√ax=axn to rewrite √85 as 8512.
cos(θ)=-2√85(8512)2
Step 4.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cos(θ)=-2√858512⋅2
Step 4.3.6.3
Combine 12 and 2.
cos(θ)=-2√858522
Step 4.3.6.4
Cancel the common factor of 2.
Step 4.3.6.4.1
Cancel the common factor.
cos(θ)=-2√858522
Step 4.3.6.4.2
Rewrite the expression.
cos(θ)=-2√8585
cos(θ)=-2√8585
Step 4.3.6.5
Evaluate the exponent.
cos(θ)=-2√8585
cos(θ)=-2√8585
cos(θ)=-2√8585
cos(θ)=-2√8585
Step 5
Approximate the result.
cos(θ)=-2√8585≈-0.21693045