Trigonometry Examples
f(θ)=3sin(2θ)
Step 1
Use the form asin(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=3
b=2
c=0
d=0
Step 2
Find the amplitude |a|.
Amplitude: 3
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2
Replace b with 2 in the formula for period.
2π|2|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 0 and 2 is 2.
2π2
Step 3.4
Cancel the common factor of 2.
Step 3.4.1
Cancel the common factor.
2π2
Step 3.4.2
Divide π by 1.
π
π
π
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 02
Step 4.3
Divide 0 by 2.
Phase Shift: 0
Phase Shift: 0
Step 5
List the properties of the trigonometric function.
Amplitude: 3
Period: π
Phase Shift: None
Vertical Shift: None
Step 6
Step 6.1
Find the point at x=0.
Step 6.1.1
Replace the variable x with 0 in the expression.
f(0)=3sin(2(0))
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Multiply 2 by 0.
f(0)=3sin(0)
Step 6.1.2.2
The exact value of sin(0) is 0.
f(0)=3⋅0
Step 6.1.2.3
Multiply 3 by 0.
f(0)=0
Step 6.1.2.4
The final answer is 0.
0
0
0
Step 6.2
Find the point at x=π4.
Step 6.2.1
Replace the variable x with π4 in the expression.
f(π4)=3sin(2(π4))
Step 6.2.2
Simplify the result.
Step 6.2.2.1
Cancel the common factor of 2.
Step 6.2.2.1.1
Factor 2 out of 4.
f(π4)=3sin(2(π2(2)))
Step 6.2.2.1.2
Cancel the common factor.
f(π4)=3sin(2(π2⋅2))
Step 6.2.2.1.3
Rewrite the expression.
f(π4)=3sin(π2)
f(π4)=3sin(π2)
Step 6.2.2.2
The exact value of sin(π2) is 1.
f(π4)=3⋅1
Step 6.2.2.3
Multiply 3 by 1.
f(π4)=3
Step 6.2.2.4
The final answer is 3.
3
3
3
Step 6.3
Find the point at x=π2.
Step 6.3.1
Replace the variable x with π2 in the expression.
f(π2)=3sin(2(π2))
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Cancel the common factor of 2.
Step 6.3.2.1.1
Cancel the common factor.
f(π2)=3sin(2(π2))
Step 6.3.2.1.2
Rewrite the expression.
f(π2)=3sin(π)
f(π2)=3sin(π)
Step 6.3.2.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(π2)=3sin(0)
Step 6.3.2.3
The exact value of sin(0) is 0.
f(π2)=3⋅0
Step 6.3.2.4
Multiply 3 by 0.
f(π2)=0
Step 6.3.2.5
The final answer is 0.
0
0
0
Step 6.4
Find the point at x=3π4.
Step 6.4.1
Replace the variable x with 3π4 in the expression.
f(3π4)=3sin(2(3π4))
Step 6.4.2
Simplify the result.
Step 6.4.2.1
Cancel the common factor of 2.
Step 6.4.2.1.1
Factor 2 out of 4.
f(3π4)=3sin(2(3π2(2)))
Step 6.4.2.1.2
Cancel the common factor.
f(3π4)=3sin(2(3π2⋅2))
Step 6.4.2.1.3
Rewrite the expression.
f(3π4)=3sin(3π2)
f(3π4)=3sin(3π2)
Step 6.4.2.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
f(3π4)=3(-sin(π2))
Step 6.4.2.3
The exact value of sin(π2) is 1.
f(3π4)=3(-1⋅1)
Step 6.4.2.4
Multiply 3(-1⋅1).
Step 6.4.2.4.1
Multiply -1 by 1.
f(3π4)=3⋅-1
Step 6.4.2.4.2
Multiply 3 by -1.
f(3π4)=-3
f(3π4)=-3
Step 6.4.2.5
The final answer is -3.
-3
-3
-3
Step 6.5
Find the point at x=π.
Step 6.5.1
Replace the variable x with π in the expression.
f(π)=3sin(2(π))
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(π)=3sin(0)
Step 6.5.2.2
The exact value of sin(0) is 0.
f(π)=3⋅0
Step 6.5.2.3
Multiply 3 by 0.
f(π)=0
Step 6.5.2.4
The final answer is 0.
0
0
0
Step 6.6
List the points in a table.
xf(x)00π43π203π4-3π0
xf(x)00π43π203π4-3π0
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 3
Period: π
Phase Shift: None
Vertical Shift: None
xf(x)00π43π203π4-3π0
Step 8