Trigonometry Examples
sin(x)=√22sin(x)=√22
Step 1
Use the definition of sine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sin(x)=oppositehypotenusesin(x)=oppositehypotenuse
Step 2
Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.
Adjacent=-√hypotenuse2-opposite2Adjacent=−√hypotenuse2−opposite2
Step 3
Replace the known values in the equation.
Adjacent=-√(2)2-(√2)2Adjacent=−√(2)2−(√2)2
Step 4
Step 4.1
Negate √(2)2-(√2)2√(2)2−(√2)2.
Adjacent =-√(2)2-(√2)2=−√(2)2−(√2)2
Step 4.2
Raise 22 to the power of 22.
Adjacent =-√4-(√2)2=−√4−(√2)2
Step 4.3
Rewrite √22√22 as 22.
Step 4.3.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
Adjacent =-√4-(212)2=−√4−(212)2
Step 4.3.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
Adjacent =-√4-212⋅2=−√4−212⋅2
Step 4.3.3
Combine 1212 and 22.
Adjacent =-√4-222=−√4−222
Step 4.3.4
Cancel the common factor of 22.
Step 4.3.4.1
Cancel the common factor.
Adjacent =-√4-222
Step 4.3.4.2
Rewrite the expression.
Adjacent =-√4-2
Adjacent =-√4-2
Step 4.3.5
Evaluate the exponent.
Adjacent =-√4-1⋅2
Adjacent =-√4-1⋅2
Step 4.4
Multiply -1 by 2.
Adjacent =-√4-2
Step 4.5
Subtract 2 from 4.
Adjacent =-√2
Adjacent =-√2
Step 5
Step 5.1
Use the definition of cosine to find the value of cos(x).
cos(x)=adjhyp
Step 5.2
Substitute in the known values.
cos(x)=-√22
Step 5.3
Move the negative in front of the fraction.
cos(x)=-√22
cos(x)=-√22
Step 6
Step 6.1
Use the definition of tangent to find the value of tan(x).
tan(x)=oppadj
Step 6.2
Substitute in the known values.
tan(x)=√2-√2
Step 6.3
Simplify the value of tan(x).
Step 6.3.1
Cancel the common factor of √2.
Step 6.3.1.1
Cancel the common factor.
tan(x)=√2-√2
Step 6.3.1.2
Rewrite the expression.
tan(x)=1-1
Step 6.3.1.3
Move the negative one from the denominator of 1-1.
tan(x)=-1⋅1
tan(x)=-1⋅1
Step 6.3.2
Multiply -1 by 1.
tan(x)=-1
tan(x)=-1
tan(x)=-1
Step 7
Step 7.1
Use the definition of cotangent to find the value of cot(x).
cot(x)=adjopp
Step 7.2
Substitute in the known values.
cot(x)=-√2√2
Step 7.3
Cancel the common factor of √2.
Step 7.3.1
Cancel the common factor.
cot(x)=-√2√2
Step 7.3.2
Divide -1 by 1.
cot(x)=-1
cot(x)=-1
cot(x)=-1
Step 8
Step 8.1
Use the definition of secant to find the value of sec(x).
sec(x)=hypadj
Step 8.2
Substitute in the known values.
sec(x)=2-√2
Step 8.3
Simplify the value of sec(x).
Step 8.3.1
Move the negative in front of the fraction.
sec(x)=-2√2
Step 8.3.2
Multiply 2√2 by √2√2.
sec(x)=-(2√2⋅√2√2)
Step 8.3.3
Combine and simplify the denominator.
Step 8.3.3.1
Multiply 2√2 by √2√2.
sec(x)=-2√2√2√2
Step 8.3.3.2
Raise √2 to the power of 1.
sec(x)=-2√2√2√2
Step 8.3.3.3
Raise √2 to the power of 1.
sec(x)=-2√2√2√2
Step 8.3.3.4
Use the power rule aman=am+n to combine exponents.
sec(x)=-2√2√21+1
Step 8.3.3.5
Add 1 and 1.
sec(x)=-2√2√22
Step 8.3.3.6
Rewrite √22 as 2.
Step 8.3.3.6.1
Use n√ax=axn to rewrite √2 as 212.
sec(x)=-2√2(212)2
Step 8.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(x)=-2√2212⋅2
Step 8.3.3.6.3
Combine 12 and 2.
sec(x)=-2√2222
Step 8.3.3.6.4
Cancel the common factor of 2.
Step 8.3.3.6.4.1
Cancel the common factor.
sec(x)=-2√2222
Step 8.3.3.6.4.2
Rewrite the expression.
sec(x)=-2√22
sec(x)=-2√22
Step 8.3.3.6.5
Evaluate the exponent.
sec(x)=-2√22
sec(x)=-2√22
sec(x)=-2√22
Step 8.3.4
Cancel the common factor of 2.
Step 8.3.4.1
Cancel the common factor.
sec(x)=-2√22
Step 8.3.4.2
Divide √2 by 1.
sec(x)=-√2
sec(x)=-√2
sec(x)=-√2
sec(x)=-√2
Step 9
Step 9.1
Use the definition of cosecant to find the value of csc(x).
csc(x)=hypopp
Step 9.2
Substitute in the known values.
csc(x)=2√2
Step 9.3
Simplify the value of csc(x).
Step 9.3.1
Multiply 2√2 by √2√2.
csc(x)=2√2⋅√2√2
Step 9.3.2
Combine and simplify the denominator.
Step 9.3.2.1
Multiply 2√2 by √2√2.
csc(x)=2√2√2√2
Step 9.3.2.2
Raise √2 to the power of 1.
csc(x)=2√2√2√2
Step 9.3.2.3
Raise √2 to the power of 1.
csc(x)=2√2√2√2
Step 9.3.2.4
Use the power rule aman=am+n to combine exponents.
csc(x)=2√2√21+1
Step 9.3.2.5
Add 1 and 1.
csc(x)=2√2√22
Step 9.3.2.6
Rewrite √22 as 2.
Step 9.3.2.6.1
Use n√ax=axn to rewrite √2 as 212.
csc(x)=2√2(212)2
Step 9.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(x)=2√2212⋅2
Step 9.3.2.6.3
Combine 12 and 2.
csc(x)=2√2222
Step 9.3.2.6.4
Cancel the common factor of 2.
Step 9.3.2.6.4.1
Cancel the common factor.
csc(x)=2√2222
Step 9.3.2.6.4.2
Rewrite the expression.
csc(x)=2√22
csc(x)=2√22
Step 9.3.2.6.5
Evaluate the exponent.
csc(x)=2√22
csc(x)=2√22
csc(x)=2√22
Step 9.3.3
Cancel the common factor of 2.
Step 9.3.3.1
Cancel the common factor.
csc(x)=2√22
Step 9.3.3.2
Divide √2 by 1.
csc(x)=√2
csc(x)=√2
csc(x)=√2
csc(x)=√2
Step 10
This is the solution to each trig value.
sin(x)=√22
cos(x)=-√22
tan(x)=-1
cot(x)=-1
sec(x)=-√2
csc(x)=√2