Trigonometry Examples

Find the Other Trig Values in Quadrant I
cos(x)=22cos(x)=22
Step 1
Use the definition of cosine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
cos(x)=adjacenthypotenusecos(x)=adjacenthypotenuse
Step 2
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=-hypotenuse2-adjacent2Opposite=hypotenuse2adjacent2
Step 3
Replace the known values in the equation.
Opposite=-(2)2-(2)2Opposite=(2)2(2)2
Step 4
Simplify inside the radical.
Tap for more steps...
Step 4.1
Negate (2)2-(2)2(2)2(2)2.
Opposite =-(2)2-(2)2=(2)2(2)2
Step 4.2
Raise 22 to the power of 22.
Opposite =-4-(2)2=4(2)2
Step 4.3
Rewrite 2222 as 22.
Tap for more steps...
Step 4.3.1
Use nax=axnnax=axn to rewrite 22 as 212212.
Opposite =-4-(212)2=4(212)2
Step 4.3.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
Opposite =-4-2122=42122
Step 4.3.3
Combine 1212 and 22.
Opposite =-4-222=4222
Step 4.3.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.3.4.1
Cancel the common factor.
Opposite =-4-222
Step 4.3.4.2
Rewrite the expression.
Opposite =-4-2
Opposite =-4-2
Step 4.3.5
Evaluate the exponent.
Opposite =-4-12
Opposite =-4-12
Step 4.4
Multiply -1 by 2.
Opposite =-4-2
Step 4.5
Subtract 2 from 4.
Opposite =-2
Opposite =-2
Step 5
Find the value of sine.
Tap for more steps...
Step 5.1
Use the definition of sine to find the value of sin(x).
sin(x)=opphyp
Step 5.2
Substitute in the known values.
sin(x)=-22
Step 5.3
Move the negative in front of the fraction.
sin(x)=-22
sin(x)=-22
Step 6
Find the value of tangent.
Tap for more steps...
Step 6.1
Use the definition of tangent to find the value of tan(x).
tan(x)=oppadj
Step 6.2
Substitute in the known values.
tan(x)=-22
Step 6.3
Cancel the common factor of 2.
Tap for more steps...
Step 6.3.1
Cancel the common factor.
tan(x)=-22
Step 6.3.2
Divide -1 by 1.
tan(x)=-1
tan(x)=-1
tan(x)=-1
Step 7
Find the value of cotangent.
Tap for more steps...
Step 7.1
Use the definition of cotangent to find the value of cot(x).
cot(x)=adjopp
Step 7.2
Substitute in the known values.
cot(x)=2-2
Step 7.3
Simplify the value of cot(x).
Tap for more steps...
Step 7.3.1
Cancel the common factor of 2.
Tap for more steps...
Step 7.3.1.1
Cancel the common factor.
cot(x)=2-2
Step 7.3.1.2
Rewrite the expression.
cot(x)=1-1
Step 7.3.1.3
Move the negative one from the denominator of 1-1.
cot(x)=-11
cot(x)=-11
Step 7.3.2
Multiply -1 by 1.
cot(x)=-1
cot(x)=-1
cot(x)=-1
Step 8
Find the value of secant.
Tap for more steps...
Step 8.1
Use the definition of secant to find the value of sec(x).
sec(x)=hypadj
Step 8.2
Substitute in the known values.
sec(x)=22
Step 8.3
Simplify the value of sec(x).
Tap for more steps...
Step 8.3.1
Multiply 22 by 22.
sec(x)=2222
Step 8.3.2
Combine and simplify the denominator.
Tap for more steps...
Step 8.3.2.1
Multiply 22 by 22.
sec(x)=2222
Step 8.3.2.2
Raise 2 to the power of 1.
sec(x)=2222
Step 8.3.2.3
Raise 2 to the power of 1.
sec(x)=2222
Step 8.3.2.4
Use the power rule aman=am+n to combine exponents.
sec(x)=2221+1
Step 8.3.2.5
Add 1 and 1.
sec(x)=2222
Step 8.3.2.6
Rewrite 22 as 2.
Tap for more steps...
Step 8.3.2.6.1
Use nax=axn to rewrite 2 as 212.
sec(x)=22(212)2
Step 8.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(x)=222122
Step 8.3.2.6.3
Combine 12 and 2.
sec(x)=22222
Step 8.3.2.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.2.6.4.1
Cancel the common factor.
sec(x)=22222
Step 8.3.2.6.4.2
Rewrite the expression.
sec(x)=222
sec(x)=222
Step 8.3.2.6.5
Evaluate the exponent.
sec(x)=222
sec(x)=222
sec(x)=222
Step 8.3.3
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.3.1
Cancel the common factor.
sec(x)=222
Step 8.3.3.2
Divide 2 by 1.
sec(x)=2
sec(x)=2
sec(x)=2
sec(x)=2
Step 9
Find the value of cosecant.
Tap for more steps...
Step 9.1
Use the definition of cosecant to find the value of csc(x).
csc(x)=hypopp
Step 9.2
Substitute in the known values.
csc(x)=2-2
Step 9.3
Simplify the value of csc(x).
Tap for more steps...
Step 9.3.1
Move the negative in front of the fraction.
csc(x)=-22
Step 9.3.2
Multiply 22 by 22.
csc(x)=-(2222)
Step 9.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 9.3.3.1
Multiply 22 by 22.
csc(x)=-2222
Step 9.3.3.2
Raise 2 to the power of 1.
csc(x)=-2222
Step 9.3.3.3
Raise 2 to the power of 1.
csc(x)=-2222
Step 9.3.3.4
Use the power rule aman=am+n to combine exponents.
csc(x)=-2221+1
Step 9.3.3.5
Add 1 and 1.
csc(x)=-2222
Step 9.3.3.6
Rewrite 22 as 2.
Tap for more steps...
Step 9.3.3.6.1
Use nax=axn to rewrite 2 as 212.
csc(x)=-22(212)2
Step 9.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(x)=-222122
Step 9.3.3.6.3
Combine 12 and 2.
csc(x)=-22222
Step 9.3.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.3.3.6.4.1
Cancel the common factor.
csc(x)=-22222
Step 9.3.3.6.4.2
Rewrite the expression.
csc(x)=-222
csc(x)=-222
Step 9.3.3.6.5
Evaluate the exponent.
csc(x)=-222
csc(x)=-222
csc(x)=-222
Step 9.3.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.3.4.1
Cancel the common factor.
csc(x)=-222
Step 9.3.4.2
Divide 2 by 1.
csc(x)=-2
csc(x)=-2
csc(x)=-2
csc(x)=-2
Step 10
This is the solution to each trig value.
sin(x)=-22
cos(x)=22
tan(x)=-1
cot(x)=-1
sec(x)=2
csc(x)=-2
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay