Trigonometry Examples

Convert to Trigonometric Form
5i+3
Step 1
Reorder 5i and 3.
3+5i
Step 2
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 3
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2 where z=a+bi
Step 4
Substitute the actual values of a=3 and b=5.
|z|=52+32
Step 5
Find |z|.
Tap for more steps...
Step 5.1
Raise 5 to the power of 2.
|z|=25+32
Step 5.2
Raise 3 to the power of 2.
|z|=25+9
Step 5.3
Add 25 and 9.
|z|=34
|z|=34
Step 6
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(53)
Step 7
Since inverse tangent of 53 produces an angle in the first quadrant, the value of the angle is 1.03037682.
θ=1.03037682
Step 8
Substitute the values of θ=1.03037682 and |z|=34.
34(cos(1.03037682)+isin(1.03037682))
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay