Trigonometry Examples
-43+i−43+i
Step 1
Multiply the numerator and denominator of -43+1i−43+1i by the conjugate of 3+1i3+1i to make the denominator real.
-43+1i⋅3-i3-i−43+1i⋅3−i3−i
Step 2
Step 2.1
Combine.
-4(3-i)(3+1i)(3-i)−4(3−i)(3+1i)(3−i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Apply the distributive property.
-4⋅3-4(-i)(3+1i)(3-i)−4⋅3−4(−i)(3+1i)(3−i)
Step 2.2.2
Multiply -4−4 by 33.
-12-4(-i)(3+1i)(3-i)−12−4(−i)(3+1i)(3−i)
Step 2.2.3
Multiply -1−1 by -4−4.
-12+4i(3+1i)(3-i)−12+4i(3+1i)(3−i)
-12+4i(3+1i)(3-i)−12+4i(3+1i)(3−i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (3+1i)(3-i)(3+1i)(3−i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
-12+4i3(3-i)+1i(3-i)−12+4i3(3−i)+1i(3−i)
Step 2.3.1.2
Apply the distributive property.
-12+4i3⋅3+3(-i)+1i(3-i)−12+4i3⋅3+3(−i)+1i(3−i)
Step 2.3.1.3
Apply the distributive property.
-12+4i3⋅3+3(-i)+1i⋅3+1i(-i)−12+4i3⋅3+3(−i)+1i⋅3+1i(−i)
-12+4i3⋅3+3(-i)+1i⋅3+1i(-i)−12+4i3⋅3+3(−i)+1i⋅3+1i(−i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 33 by 33.
-12+4i9+3(-i)+1i⋅3+1i(-i)−12+4i9+3(−i)+1i⋅3+1i(−i)
Step 2.3.2.2
Multiply -1−1 by 33.
-12+4i9-3i+1i⋅3+1i(-i)−12+4i9−3i+1i⋅3+1i(−i)
Step 2.3.2.3
Multiply 33 by 11.
-12+4i9-3i+3i+1i(-i)−12+4i9−3i+3i+1i(−i)
Step 2.3.2.4
Multiply -1−1 by 11.
-12+4i9-3i+3i-ii−12+4i9−3i+3i−ii
Step 2.3.2.5
Raise ii to the power of 11.
-12+4i9-3i+3i-(i1i)−12+4i9−3i+3i−(i1i)
Step 2.3.2.6
Raise ii to the power of 11.
-12+4i9-3i+3i-(i1i1)−12+4i9−3i+3i−(i1i1)
Step 2.3.2.7
Use the power rule aman=am+naman=am+n to combine exponents.
-12+4i9-3i+3i-i1+1−12+4i9−3i+3i−i1+1
Step 2.3.2.8
Add 11 and 11.
-12+4i9-3i+3i-i2−12+4i9−3i+3i−i2
Step 2.3.2.9
Add -3i−3i and 3i3i.
-12+4i9+0-i2−12+4i9+0−i2
Step 2.3.2.10
Add 99 and 00.
-12+4i9-i2−12+4i9−i2
-12+4i9-i2−12+4i9−i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2i2 as -1−1.
-12+4i9--1−12+4i9−−1
Step 2.3.3.2
Multiply -1−1 by -1−1.
-12+4i9+1−12+4i9+1
-12+4i9+1−12+4i9+1
Step 2.3.4
Add 99 and 11.
-12+4i10−12+4i10
-12+4i10−12+4i10
-12+4i10−12+4i10
Step 3
Step 3.1
Factor 22 out of -12−12.
2(-6)+4i102(−6)+4i10
Step 3.2
Factor 22 out of 4i4i.
2(-6)+2(2i)102(−6)+2(2i)10
Step 3.3
Factor 22 out of 2(-6)+2(2i)2(−6)+2(2i).
2(-6+2i)102(−6+2i)10
Step 3.4
Cancel the common factors.
Step 3.4.1
Factor 22 out of 1010.
2(-6+2i)2⋅52(−6+2i)2⋅5
Step 3.4.2
Cancel the common factor.
2(-6+2i)2⋅5
Step 3.4.3
Rewrite the expression.
-6+2i5
-6+2i5
-6+2i5
Step 4
Split the fraction -6+2i5 into two fractions.
-65+2i5
Step 5
Move the negative in front of the fraction.
-65+2i5