Trigonometry Examples

-53+2i
Step 1
Multiply the numerator and denominator of -53+2i by the conjugate of 3+2i to make the denominator real.
-53+2i3-2i3-2i
Step 2
Multiply.
Tap for more steps...
Step 2.1
Combine.
-5(3-2i)(3+2i)(3-2i)
Step 2.2
Simplify the numerator.
Tap for more steps...
Step 2.2.1
Apply the distributive property.
-53-5(-2i)(3+2i)(3-2i)
Step 2.2.2
Multiply -5 by 3.
-15-5(-2i)(3+2i)(3-2i)
Step 2.2.3
Multiply -2 by -5.
-15+10i(3+2i)(3-2i)
-15+10i(3+2i)(3-2i)
Step 2.3
Simplify the denominator.
Tap for more steps...
Step 2.3.1
Expand (3+2i)(3-2i) using the FOIL Method.
Tap for more steps...
Step 2.3.1.1
Apply the distributive property.
-15+10i3(3-2i)+2i(3-2i)
Step 2.3.1.2
Apply the distributive property.
-15+10i33+3(-2i)+2i(3-2i)
Step 2.3.1.3
Apply the distributive property.
-15+10i33+3(-2i)+2i3+2i(-2i)
-15+10i33+3(-2i)+2i3+2i(-2i)
Step 2.3.2
Simplify.
Tap for more steps...
Step 2.3.2.1
Multiply 3 by 3.
-15+10i9+3(-2i)+2i3+2i(-2i)
Step 2.3.2.2
Multiply -2 by 3.
-15+10i9-6i+2i3+2i(-2i)
Step 2.3.2.3
Multiply 3 by 2.
-15+10i9-6i+6i+2i(-2i)
Step 2.3.2.4
Multiply -2 by 2.
-15+10i9-6i+6i-4ii
Step 2.3.2.5
Raise i to the power of 1.
-15+10i9-6i+6i-4(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-15+10i9-6i+6i-4(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-15+10i9-6i+6i-4i1+1
Step 2.3.2.8
Add 1 and 1.
-15+10i9-6i+6i-4i2
Step 2.3.2.9
Add -6i and 6i.
-15+10i9+0-4i2
Step 2.3.2.10
Add 9 and 0.
-15+10i9-4i2
-15+10i9-4i2
Step 2.3.3
Simplify each term.
Tap for more steps...
Step 2.3.3.1
Rewrite i2 as -1.
-15+10i9-4-1
Step 2.3.3.2
Multiply -4 by -1.
-15+10i9+4
-15+10i9+4
Step 2.3.4
Add 9 and 4.
-15+10i13
-15+10i13
-15+10i13
Step 3
Split the fraction -15+10i13 into two fractions.
-1513+10i13
Step 4
Move the negative in front of the fraction.
-1513+10i13
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay