Trigonometry Examples
(z+3)3=2i
Step 1
Substitute u for z+3.
u3=2i
Step 2
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 3
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2 where z=a+bi
Step 4
Substitute the actual values of a=0 and b=2.
|z|=√22
Step 5
Pull terms out from under the radical, assuming positive real numbers.
|z|=2
Step 6
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(20)
Step 7
Since the argument is undefined and b is positive, the angle of the point on the complex plane is π2.
θ=π2
Step 8
Substitute the values of θ=π2 and |z|=2.
2(cos(π2)+isin(π2))
Step 9
Replace the right side of the equation with the trigonometric form.
u3=2(cos(π2)+isin(π2))
Step 10
Use De Moivre's Theorem to find an equation for u.
r3(cos(3θ)+isin(3θ))=2i=2(cos(π2)+isin(π2))
Step 11
Equate the modulus of the trigonometric form to r3 to find the value of r.
r3=2
Step 12
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
r=3√2
Step 13
Find the approximate value of r.
r=1.25992104
Step 14
Find the possible values of θ.
cos(3θ)=cos(π2+2πn) and sin(3θ)=sin(π2+2πn)
Step 15
Finding all the possible values of θ leads to the equation 3θ=π2+2πn.
3θ=π2+2πn
Step 16
Find the value of θ for r=0.
3θ=π2+2π(0)
Step 17
Step 17.1
Simplify.
Step 17.1.1
Multiply 2π(0).
Step 17.1.1.1
Multiply 0 by 2.
3θ=π2+0π
Step 17.1.1.2
Multiply 0 by π.
3θ=π2+0
3θ=π2+0
Step 17.1.2
Add π2 and 0.
3θ=π2
3θ=π2
Step 17.2
Divide each term in 3θ=π2 by 3 and simplify.
Step 17.2.1
Divide each term in 3θ=π2 by 3.
3θ3=π23
Step 17.2.2
Simplify the left side.
Step 17.2.2.1
Cancel the common factor of 3.
Step 17.2.2.1.1
Cancel the common factor.
3θ3=π23
Step 17.2.2.1.2
Divide θ by 1.
θ=π23
θ=π23
θ=π23
Step 17.2.3
Simplify the right side.
Step 17.2.3.1
Multiply the numerator by the reciprocal of the denominator.
θ=π2⋅13
Step 17.2.3.2
Multiply π2⋅13.
Step 17.2.3.2.1
Multiply π2 by 13.
θ=π2⋅3
Step 17.2.3.2.2
Multiply 2 by 3.
θ=π6
θ=π6
θ=π6
θ=π6
θ=π6
Step 18
Use the values of θ and r to find a solution to the equation u3=2i.
u0=1.25992104(cos(π6)+isin(π6))
Step 19
Step 19.1
Simplify each term.
Step 19.1.1
The exact value of cos(π6) is √32.
u0=1.25992104(√32+isin(π6))
Step 19.1.2
The exact value of sin(π6) is 12.
u0=1.25992104(√32+i(12))
Step 19.1.3
Combine i and 12.
u0=1.25992104(√32+i2)
u0=1.25992104(√32+i2)
Step 19.2
Apply the distributive property.
u0=1.25992104(√32)+1.25992104(i2)
Step 19.3
Multiply 1.25992104√32.
Step 19.3.1
Combine 1.25992104 and √32.
u0=1.25992104√32+1.25992104(i2)
Step 19.3.2
Multiply 1.25992104 by √3.
u0=2.182247272+1.25992104(i2)
u0=2.182247272+1.25992104(i2)
Step 19.4
Combine 1.25992104 and i2.
u0=2.182247272+1.25992104i2
Step 19.5
Simplify each term.
Step 19.5.1
Divide 2.18224727 by 2.
u0=1.09112363+1.25992104i2
Step 19.5.2
Factor 1.25992104 out of 1.25992104i.
u0=1.09112363+1.25992104(i)2
Step 19.5.3
Factor 2 out of 2.
u0=1.09112363+1.25992104(i)2(1)
Step 19.5.4
Separate fractions.
u0=1.09112363+1.259921042⋅i1
Step 19.5.5
Divide 1.25992104 by 2.
u0=1.09112363+0.62996052(i1)
Step 19.5.6
Divide i by 1.
u0=1.09112363+0.62996052i
u0=1.09112363+0.62996052i
u0=1.09112363+0.62996052i
Step 20
Substitute z+3 for u to calculate the value of z after the left shift.
z0=-3+1.09112363+0.62996052i
Step 21
Find the value of θ for r=1.
3θ=π2+2π(1)
Step 22
Step 22.1
Simplify.
Step 22.1.1
Multiply 2 by 1.
3θ=π2+2π
Step 22.1.2
To write 2π as a fraction with a common denominator, multiply by 22.
3θ=π2+2π⋅22
Step 22.1.3
Combine 2π and 22.
3θ=π2+2π⋅22
Step 22.1.4
Combine the numerators over the common denominator.
3θ=π+2π⋅22
Step 22.1.5
Multiply 2 by 2.
3θ=π+4π2
Step 22.1.6
Add π and 4π.
3θ=5π2
3θ=5π2
Step 22.2
Divide each term in 3θ=5π2 by 3 and simplify.
Step 22.2.1
Divide each term in 3θ=5π2 by 3.
3θ3=5π23
Step 22.2.2
Simplify the left side.
Step 22.2.2.1
Cancel the common factor of 3.
Step 22.2.2.1.1
Cancel the common factor.
3θ3=5π23
Step 22.2.2.1.2
Divide θ by 1.
θ=5π23
θ=5π23
θ=5π23
Step 22.2.3
Simplify the right side.
Step 22.2.3.1
Multiply the numerator by the reciprocal of the denominator.
θ=5π2⋅13
Step 22.2.3.2
Multiply 5π2⋅13.
Step 22.2.3.2.1
Multiply 5π2 by 13.
θ=5π2⋅3
Step 22.2.3.2.2
Multiply 2 by 3.
θ=5π6
θ=5π6
θ=5π6
θ=5π6
θ=5π6
Step 23
Use the values of θ and r to find a solution to the equation u3=2i.
u1=1.25992104(cos(5π6)+isin(5π6))
Step 24
Step 24.1
Simplify each term.
Step 24.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
u1=1.25992104(-cos(π6)+isin(5π6))
Step 24.1.2
The exact value of cos(π6) is √32.
u1=1.25992104(-√32+isin(5π6))
Step 24.1.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
u1=1.25992104(-√32+isin(π6))
Step 24.1.4
The exact value of sin(π6) is 12.
u1=1.25992104(-√32+i(12))
Step 24.1.5
Combine i and 12.
u1=1.25992104(-√32+i2)
u1=1.25992104(-√32+i2)
Step 24.2
Apply the distributive property.
u1=1.25992104(-√32)+1.25992104(i2)
Step 24.3
Multiply 1.25992104(-√32).
Step 24.3.1
Multiply -1 by 1.25992104.
u1=-1.25992104√32+1.25992104(i2)
Step 24.3.2
Combine -1.25992104 and √32.
u1=-1.25992104√32+1.25992104(i2)
Step 24.3.3
Multiply -1.25992104 by √3.
u1=-2.182247272+1.25992104(i2)
u1=-2.182247272+1.25992104(i2)
Step 24.4
Combine 1.25992104 and i2.
u1=-2.182247272+1.25992104i2
Step 24.5
Simplify each term.
Step 24.5.1
Divide -2.18224727 by 2.
u1=-1.09112363+1.25992104i2
Step 24.5.2
Factor 1.25992104 out of 1.25992104i.
u1=-1.09112363+1.25992104(i)2
Step 24.5.3
Factor 2 out of 2.
u1=-1.09112363+1.25992104(i)2(1)
Step 24.5.4
Separate fractions.
u1=-1.09112363+1.259921042⋅i1
Step 24.5.5
Divide 1.25992104 by 2.
u1=-1.09112363+0.62996052(i1)
Step 24.5.6
Divide i by 1.
u1=-1.09112363+0.62996052i
u1=-1.09112363+0.62996052i
u1=-1.09112363+0.62996052i
Step 25
Substitute z+3 for u to calculate the value of z after the left shift.
z1=-3-1.09112363+0.62996052i
Step 26
Find the value of θ for r=2.
3θ=π2+2π(2)
Step 27
Step 27.1
Simplify.
Step 27.1.1
Multiply 2 by 2.
3θ=π2+4π
Step 27.1.2
To write 4π as a fraction with a common denominator, multiply by 22.
3θ=π2+4π⋅22
Step 27.1.3
Combine 4π and 22.
3θ=π2+4π⋅22
Step 27.1.4
Combine the numerators over the common denominator.
3θ=π+4π⋅22
Step 27.1.5
Multiply 2 by 4.
3θ=π+8π2
Step 27.1.6
Add π and 8π.
3θ=9π2
3θ=9π2
Step 27.2
Divide each term in 3θ=9π2 by 3 and simplify.
Step 27.2.1
Divide each term in 3θ=9π2 by 3.
3θ3=9π23
Step 27.2.2
Simplify the left side.
Step 27.2.2.1
Cancel the common factor of 3.
Step 27.2.2.1.1
Cancel the common factor.
3θ3=9π23
Step 27.2.2.1.2
Divide θ by 1.
θ=9π23
θ=9π23
θ=9π23
Step 27.2.3
Simplify the right side.
Step 27.2.3.1
Multiply the numerator by the reciprocal of the denominator.
θ=9π2⋅13
Step 27.2.3.2
Cancel the common factor of 3.
Step 27.2.3.2.1
Factor 3 out of 9π.
θ=3(3π)2⋅13
Step 27.2.3.2.2
Cancel the common factor.
θ=3(3π)2⋅13
Step 27.2.3.2.3
Rewrite the expression.
θ=3π2
θ=3π2
θ=3π2
θ=3π2
θ=3π2
Step 28
Use the values of θ and r to find a solution to the equation u3=2i.
u2=1.25992104(cos(3π2)+isin(3π2))
Step 29
Step 29.1
Simplify each term.
Step 29.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
u2=1.25992104(cos(π2)+isin(3π2))
Step 29.1.2
The exact value of cos(π2) is 0.
u2=1.25992104(0+isin(3π2))
Step 29.1.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
u2=1.25992104(0+i(-sin(π2)))
Step 29.1.4
The exact value of sin(π2) is 1.
u2=1.25992104(0+i(-1⋅1))
Step 29.1.5
Multiply -1 by 1.
u2=1.25992104(0+i⋅-1)
Step 29.1.6
Move -1 to the left of i.
u2=1.25992104(0-1⋅i)
Step 29.1.7
Rewrite -1i as -i.
u2=1.25992104(0-i)
u2=1.25992104(0-i)
Step 29.2
Simplify the expression.
Step 29.2.1
Subtract i from 0.
u2=1.25992104(-i)
Step 29.2.2
Multiply -1 by 1.25992104.
u2=-1.25992104i
u2=-1.25992104i
u2=-1.25992104i
Step 30
Substitute z+3 for u to calculate the value of z after the left shift.
z2=-3-1.25992104i
Step 31
These are the complex solutions to u3=2i.
z0=-1.90887636+0.62996052i
z1=-4.09112363+0.62996052i
z2=-3-1.25992104i