Trigonometry Examples

Find the Cube Roots of a Complex Number
-2722+2722i2722+2722i , n=3n=3
Step 1
Calculate the distance from (a,b)(a,b) to the origin using the formula r=a2+b2r=a2+b2.
r=(-2722)2+(2722)2r= (2722)2+(2722)2
Step 2
Simplify (-2722)2+(2722)2 (2722)2+(2722)2.
Tap for more steps...
Step 2.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.1.1
Apply the product rule to -27222722.
r=(-1)2(2722)2+(2722)2r= (1)2(2722)2+(2722)2
Step 2.1.2
Apply the product rule to 27222722.
r=(-1)2(272)222+(2722)2r=  (1)2(272)222+(2722)2
Step 2.1.3
Apply the product rule to 272272.
r=(-1)22722222+(2722)2r= (1)22722222+(2722)2
r=(-1)22722222+(2722)2r= (1)22722222+(2722)2
Step 2.2
Simplify the expression.
Tap for more steps...
Step 2.2.1
Raise -11 to the power of 22.
r=12722222+(2722)2r= 12722222+(2722)2
Step 2.2.2
Multiply 27222222722222 by 11.
r=2722222+(2722)2r= 2722222+(2722)2
r=2722222+(2722)2r= 2722222+(2722)2
Step 2.3
Simplify the numerator.
Tap for more steps...
Step 2.3.1
Raise 2727 to the power of 22.
r=7292222+(2722)2r= 7292222+(2722)2
Step 2.3.2
Rewrite 2222 as 22.
Tap for more steps...
Step 2.3.2.1
Use nax=axnnax=axn to rewrite 22 as 212212.
r=729(212)222+(2722)2r=  729(212)222+(2722)2
Step 2.3.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
r=729212222+(2722)2r= 729212222+(2722)2
Step 2.3.2.3
Combine 12 and 2.
r=72922222+(2722)2
Step 2.3.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.2.4.1
Cancel the common factor.
r=72922222+(2722)2
Step 2.3.2.4.2
Rewrite the expression.
r=7292122+(2722)2
r=7292122+(2722)2
Step 2.3.2.5
Evaluate the exponent.
r=729222+(2722)2
r=729222+(2722)2
r=729222+(2722)2
Step 2.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.4.1
Raise 2 to the power of 2.
r=72924+(2722)2
Step 2.4.2
Multiply 729 by 2.
r=14584+(2722)2
Step 2.4.3
Cancel the common factor of 1458 and 4.
Tap for more steps...
Step 2.4.3.1
Factor 2 out of 1458.
r=2(729)4+(2722)2
Step 2.4.3.2
Cancel the common factors.
Tap for more steps...
Step 2.4.3.2.1
Factor 2 out of 4.
r=272922+(2722)2
Step 2.4.3.2.2
Cancel the common factor.
r=272922+(2722)2
Step 2.4.3.2.3
Rewrite the expression.
r=7292+(2722)2
r=7292+(2722)2
r=7292+(2722)2
r=7292+(2722)2
Step 2.5
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.5.1
Apply the product rule to 2722.
r=7292+(272)222
Step 2.5.2
Apply the product rule to 272.
r=7292+2722222
r=7292+2722222
Step 2.6
Simplify the numerator.
Tap for more steps...
Step 2.6.1
Raise 27 to the power of 2.
r=7292+7292222
Step 2.6.2
Rewrite 22 as 2.
Tap for more steps...
Step 2.6.2.1
Use nax=axn to rewrite 2 as 212.
r=7292+729(212)222
Step 2.6.2.2
Apply the power rule and multiply exponents, (am)n=amn.
r=7292+729212222
Step 2.6.2.3
Combine 12 and 2.
r=7292+72922222
Step 2.6.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.6.2.4.1
Cancel the common factor.
r=7292+72922222
Step 2.6.2.4.2
Rewrite the expression.
r=7292+7292122
r=7292+7292122
Step 2.6.2.5
Evaluate the exponent.
r=7292+729222
r=7292+729222
r=7292+729222
Step 2.7
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.7.1
Raise 2 to the power of 2.
r=7292+72924
Step 2.7.2
Multiply 729 by 2.
r=7292+14584
Step 2.7.3
Cancel the common factor of 1458 and 4.
Tap for more steps...
Step 2.7.3.1
Factor 2 out of 1458.
r=7292+2(729)4
Step 2.7.3.2
Cancel the common factors.
Tap for more steps...
Step 2.7.3.2.1
Factor 2 out of 4.
r=7292+272922
Step 2.7.3.2.2
Cancel the common factor.
r=7292+272922
Step 2.7.3.2.3
Rewrite the expression.
r=7292+7292
r=7292+7292
r=7292+7292
Step 2.7.4
Simplify the expression.
Tap for more steps...
Step 2.7.4.1
Combine the numerators over the common denominator.
r=729+7292
Step 2.7.4.2
Add 729 and 729.
r=14582
Step 2.7.4.3
Divide 1458 by 2.
r=729
Step 2.7.4.4
Rewrite 729 as 272.
r=272
Step 2.7.4.5
Pull terms out from under the radical, assuming positive real numbers.
r=27
r=27
r=27
r=27
Step 3
Calculate reference angle θ̂=arctan(|ba|).
θ̂=arctan(|2722-2722|)
Step 4
Simplify arctan(|2722-2722|).
Tap for more steps...
Step 4.1
Cancel the common factor of 2722.
Tap for more steps...
Step 4.1.1
Cancel the common factor.
θ̂=arctan(|2722-2722|)
Step 4.1.2
Rewrite the expression.
θ̂=arctan(|1-1|)
Step 4.1.3
Move the negative one from the denominator of 1-1.
θ̂=arctan(|-11|)
θ̂=arctan(|-11|)
Step 4.2
Multiply -1 by 1.
θ̂=arctan(|-1|)
Step 4.3
The absolute value is the distance between a number and zero. The distance between -1 and 0 is 1.
θ̂=arctan(1)
Step 4.4
The exact value of arctan(1) is π4.
θ̂=π4
θ̂=π4
Step 5
The point is located in the second quadrant because x is negative and y is positive. The quadrants are labeled in counter-clockwise order, starting in the upper-right.
Quadrant 2
Step 6
(a,b) is in the second quadrant. θ=π-θ̂
θ=π-π4
Step 7
Simplify θ.
Tap for more steps...
Step 7.1
To write π as a fraction with a common denominator, multiply by 44.
π44-π4
Step 7.2
Combine fractions.
Tap for more steps...
Step 7.2.1
Combine π and 44.
π44-π4
Step 7.2.2
Combine the numerators over the common denominator.
π4-π4
π4-π4
Step 7.3
Simplify the numerator.
Tap for more steps...
Step 7.3.1
Move 4 to the left of π.
4π-π4
Step 7.3.2
Subtract π from 4π.
3π4
3π4
3π4
Step 8
Use the formula to find the roots of the complex number.
(a+bi)1n=r1ncis(θ+2πkn), k=0,1,,n-1
Step 9
Substitute r, n, and θ into the formula.
Tap for more steps...
Step 9.1
To write π as a fraction with a common denominator, multiply by 44.
(27)13cisπ44-π4+2πk3
Step 9.2
Combine π and 44.
(27)13cisπ44-π4+2πk3
Step 9.3
Combine the numerators over the common denominator.
(27)13cisπ4-π4+2πk3
Step 9.4
Subtract π from π4.
Tap for more steps...
Step 9.4.1
Reorder π and 4.
(27)13cis4π-π4+2πk3
Step 9.4.2
Subtract π from 4π.
(27)13cis3π4+2πk3
(27)13cis3π4+2πk3
Step 9.5
Combine (27)13 and 3π4+2πk3.
cis(27)13(3π4+2πk)3
Step 9.6
Combine c and (27)13(3π4+2πk)3.
isc((27)13(3π4+2πk))3
Step 9.7
Combine i and c((27)13(3π4+2πk))3.
si(c((27)13(3π4+2πk)))3
Step 9.8
Combine s and i(c((27)13(3π4+2πk)))3.
s(i(c((27)13(3π4+2πk))))3
Step 9.9
Remove parentheses.
Tap for more steps...
Step 9.9.1
Remove parentheses.
s(i(c(2713(3π4+2πk))))3
Step 9.9.2
Remove parentheses.
s(i(c2713(3π4+2πk)))3
Step 9.9.3
Remove parentheses.
s(i(c2713)(3π4+2πk))3
Step 9.9.4
Remove parentheses.
s(ic2713(3π4+2πk))3
Step 9.9.5
Remove parentheses.
s(ic2713)(3π4+2πk)3
Step 9.9.6
Remove parentheses.
s(ic)2713(3π4+2πk)3
Step 9.9.7
Remove parentheses.
sic2713(3π4+2πk)3
sic2713(3π4+2πk)3
sic2713(3π4+2πk)3
Step 10
Substitute k=0 into the formula and simplify.
Tap for more steps...
Step 10.1
Rewrite 27 as 33.
k=0:(33)13cis((π-π4)+2π(0)3)
Step 10.2
Apply the power rule and multiply exponents, (am)n=amn.
k=0:33(13)cis((π-π4)+2π(0)3)
Step 10.3
Cancel the common factor of 3.
Tap for more steps...
Step 10.3.1
Cancel the common factor.
k=0:33(13)cis((π-π4)+2π(0)3)
Step 10.3.2
Rewrite the expression.
k=0:3cis((π-π4)+2π(0)3)
k=0:3cis((π-π4)+2π(0)3)
Step 10.4
Evaluate the exponent.
k=0:3cis((π-π4)+2π(0)3)
Step 10.5
To write π as a fraction with a common denominator, multiply by 44.
k=0:3cis(π44-π4+2π(0)3)
Step 10.6
Combine π and 44.
k=0:3cis(π44-π4+2π(0)3)
Step 10.7
Combine the numerators over the common denominator.
k=0:3cis(π4-π4+2π(0)3)
Step 10.8
Simplify the numerator.
Tap for more steps...
Step 10.8.1
Move 4 to the left of π.
k=0:3cis(4π-π4+2π(0)3)
Step 10.8.2
Subtract π from 4π.
k=0:3cis(3π4+2π(0)3)
k=0:3cis(3π4+2π(0)3)
Step 10.9
Multiply 2π(0).
Tap for more steps...
Step 10.9.1
Multiply 0 by 2.
k=0:3cis(3π4+0π3)
Step 10.9.2
Multiply 0 by π.
k=0:3cis(3π4+03)
k=0:3cis(3π4+03)
Step 10.10
Add 3π4 and 0.
k=0:3cis(3π43)
Step 10.11
Multiply the numerator by the reciprocal of the denominator.
k=0:3cis(3π413)
Step 10.12
Cancel the common factor of 3.
Tap for more steps...
Step 10.12.1
Factor 3 out of 3π.
k=0:3cis(3(π)413)
Step 10.12.2
Cancel the common factor.
k=0:3cis(3π413)
Step 10.12.3
Rewrite the expression.
k=0:3cis(π4)
k=0:3cis(π4)
k=0:3cis(π4)
Step 11
Substitute k=1 into the formula and simplify.
Tap for more steps...
Step 11.1
Rewrite 27 as 33.
k=1:(33)13cis((π-π4)+2π(1)3)
Step 11.2
Apply the power rule and multiply exponents, (am)n=amn.
k=1:33(13)cis((π-π4)+2π(1)3)
Step 11.3
Cancel the common factor of 3.
Tap for more steps...
Step 11.3.1
Cancel the common factor.
k=1:33(13)cis((π-π4)+2π(1)3)
Step 11.3.2
Rewrite the expression.
k=1:3cis((π-π4)+2π(1)3)
k=1:3cis((π-π4)+2π(1)3)
Step 11.4
Evaluate the exponent.
k=1:3cis((π-π4)+2π(1)3)
Step 11.5
To write π as a fraction with a common denominator, multiply by 44.
k=1:3cis(π44-π4+2π(1)3)
Step 11.6
Combine π and 44.
k=1:3cis(π44-π4+2π(1)3)
Step 11.7
Combine the numerators over the common denominator.
k=1:3cis(π4-π4+2π(1)3)
Step 11.8
Simplify the numerator.
Tap for more steps...
Step 11.8.1
Move 4 to the left of π.
k=1:3cis(4π-π4+2π(1)3)
Step 11.8.2
Subtract π from 4π.
k=1:3cis(3π4+2π(1)3)
k=1:3cis(3π4+2π(1)3)
Step 11.9
Multiply 2 by 1.
k=1:3cis(3π4+2π3)
Step 11.10
To write 2π as a fraction with a common denominator, multiply by 44.
k=1:3cis(3π4+2π443)
Step 11.11
Combine 2π and 44.
k=1:3cis(3π4+2π443)
Step 11.12
Combine the numerators over the common denominator.
k=1:3cis(3π+2π443)
Step 11.13
Simplify the numerator.
Tap for more steps...
Step 11.13.1
Multiply 4 by 2.
k=1:3cis(3π+8π43)
Step 11.13.2
Add 3π and 8π.
k=1:3cis(11π43)
k=1:3cis(11π43)
Step 11.14
Multiply the numerator by the reciprocal of the denominator.
k=1:3cis(11π413)
Step 11.15
Multiply 11π413.
Tap for more steps...
Step 11.15.1
Multiply 11π4 by 13.
k=1:3cis(11π43)
Step 11.15.2
Multiply 4 by 3.
k=1:3cis(11π12)
k=1:3cis(11π12)
k=1:3cis(11π12)
Step 12
Substitute k=2 into the formula and simplify.
Tap for more steps...
Step 12.1
Rewrite 27 as 33.
k=2:(33)13cis((π-π4)+2π(2)3)
Step 12.2
Apply the power rule and multiply exponents, (am)n=amn.
k=2:33(13)cis((π-π4)+2π(2)3)
Step 12.3
Cancel the common factor of 3.
Tap for more steps...
Step 12.3.1
Cancel the common factor.
k=2:33(13)cis((π-π4)+2π(2)3)
Step 12.3.2
Rewrite the expression.
k=2:3cis((π-π4)+2π(2)3)
k=2:3cis((π-π4)+2π(2)3)
Step 12.4
Evaluate the exponent.
k=2:3cis((π-π4)+2π(2)3)
Step 12.5
To write π as a fraction with a common denominator, multiply by 44.
k=2:3cis(π44-π4+2π(2)3)
Step 12.6
Combine π and 44.
k=2:3cis(π44-π4+2π(2)3)
Step 12.7
Combine the numerators over the common denominator.
k=2:3cis(π4-π4+2π(2)3)
Step 12.8
Simplify the numerator.
Tap for more steps...
Step 12.8.1
Move 4 to the left of π.
k=2:3cis(4π-π4+2π(2)3)
Step 12.8.2
Subtract π from 4π.
k=2:3cis(3π4+2π(2)3)
k=2:3cis(3π4+2π(2)3)
Step 12.9
Multiply 2 by 2.
k=2:3cis(3π4+4π3)
Step 12.10
To write 4π as a fraction with a common denominator, multiply by 44.
k=2:3cis(3π4+4π443)
Step 12.11
Combine 4π and 44.
k=2:3cis(3π4+4π443)
Step 12.12
Combine the numerators over the common denominator.
k=2:3cis(3π+4π443)
Step 12.13
Simplify the numerator.
Tap for more steps...
Step 12.13.1
Multiply 4 by 4.
k=2:3cis(3π+16π43)
Step 12.13.2
Add 3π and 16π.
k=2:3cis(19π43)
k=2:3cis(19π43)
Step 12.14
Multiply the numerator by the reciprocal of the denominator.
k=2:3cis(19π413)
Step 12.15
Multiply 19π413.
Tap for more steps...
Step 12.15.1
Multiply 19π4 by 13.
k=2:3cis(19π43)
Step 12.15.2
Multiply 4 by 3.
k=2:3cis(19π12)
k=2:3cis(19π12)
k=2:3cis(19π12)
Step 13
List the solutions.
k=0:3cis(π4)
k=1:3cis(11π12)
k=2:3cis(19π12)
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay