Trigonometry Examples
32+32i√332+32i√3 , n=3n=3
Step 1
Calculate the distance from (a,b)(a,b) to the origin using the formula r=√a2+b2r=√a2+b2.
r=√322+(√3⋅32)2r=√322+(√3⋅32)2
Step 2
Step 2.1
Simplify the expression.
Step 2.1.1
Raise 3232 to the power of 22.
r=√1024+(√3⋅32)2r=√1024+(√3⋅32)2
Step 2.1.2
Move 3232 to the left of √3√3.
r=√1024+(32⋅√3)2r=√1024+(32⋅√3)2
Step 2.1.3
Apply the product rule to 32√332√3.
r=√1024+322√32r=√1024+322√32
Step 2.1.4
Raise 3232 to the power of 22.
r=√1024+1024√32r=√1024+1024√32
r=√1024+1024√32r=√1024+1024√32
Step 2.2
Rewrite √32√32 as 33.
Step 2.2.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
r=√1024+1024(312)2r=√1024+1024(312)2
Step 2.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
r=√1024+1024⋅312⋅2r=√1024+1024⋅312⋅2
Step 2.2.3
Combine 1212 and 22.
r=√1024+1024⋅322r=√1024+1024⋅322
Step 2.2.4
Cancel the common factor of 22.
Step 2.2.4.1
Cancel the common factor.
r=√1024+1024⋅322
Step 2.2.4.2
Rewrite the expression.
r=√1024+1024⋅31
r=√1024+1024⋅31
Step 2.2.5
Evaluate the exponent.
r=√1024+1024⋅3
r=√1024+1024⋅3
Step 2.3
Simplify the expression.
Step 2.3.1
Multiply 1024 by 3.
r=√1024+3072
Step 2.3.2
Add 1024 and 3072.
r=√4096
Step 2.3.3
Rewrite 4096 as 642.
r=√642
Step 2.3.4
Pull terms out from under the radical, assuming positive real numbers.
r=64
r=64
r=64
Step 3
Calculate reference angle θ̂=arctan(|ba|).
θ̂=arctan(|√3⋅3232|)
Step 4
Step 4.1
Cancel the common factor of 32.
Step 4.1.1
Cancel the common factor.
θ̂=arctan(|√3⋅3232|)
Step 4.1.2
Divide √3 by 1.
θ̂=arctan(|√3|)
θ̂=arctan(|√3|)
Step 4.2
√3 is approximately 1.7320508 which is positive so remove the absolute value
θ̂=arctan(√3)
Step 4.3
The exact value of arctan(√3) is π3.
θ̂=π3
θ̂=π3
Step 5
Step 5.1
Move 32 to the left of √3.
(32,32√3)
Step 5.2
The point is located in the first quadrant because x and y are both positive. The quadrants are labeled in counter-clockwise order, starting in the upper-right.
Quadrant 1
Quadrant 1
Step 6
(a,b) is in the first quadrant. θ=θ̂
θ=π3
Step 7
Use the formula to find the roots of the complex number.
(a+bi)1n=r1ncis(θ+2πkn), k=0,1,…,n-1
Step 8
Step 8.1
Combine (64)13 and (π3)+2πk3.
cis(64)13((π3)+2πk)3
Step 8.2
Combine c and (64)13((π3)+2πk)3.
isc((64)13((π3)+2πk))3
Step 8.3
Combine i and c((64)13((π3)+2πk))3.
si(c((64)13((π3)+2πk)))3
Step 8.4
Combine s and i(c((64)13((π3)+2πk)))3.
s(i(c((64)13((π3)+2πk))))3
Step 8.5
Remove parentheses.
Step 8.5.1
Remove parentheses.
s(i(c(6413((π3)+2πk))))3
Step 8.5.2
Remove parentheses.
s(i(c(6413(π3+2πk))))3
Step 8.5.3
Remove parentheses.
s(i(c⋅6413(π3+2πk)))3
Step 8.5.4
Remove parentheses.
s(i(c⋅6413)(π3+2πk))3
Step 8.5.5
Remove parentheses.
s(ic⋅6413(π3+2πk))3
Step 8.5.6
Remove parentheses.
s(ic⋅6413)(π3+2πk)3
Step 8.5.7
Remove parentheses.
s(ic)⋅6413(π3+2πk)3
Step 8.5.8
Remove parentheses.
sic⋅6413(π3+2πk)3
sic⋅6413(π3+2πk)3
sic⋅6413(π3+2πk)3
Step 9
Step 9.1
Rewrite 64 as 43.
k=0:(43)13cis((π3)+2π(0)3)
Step 9.2
Apply the power rule and multiply exponents, (am)n=amn.
k=0:43(13)cis((π3)+2π(0)3)
Step 9.3
Cancel the common factor of 3.
Step 9.3.1
Cancel the common factor.
k=0:43(13)cis((π3)+2π(0)3)
Step 9.3.2
Rewrite the expression.
k=0:4cis((π3)+2π(0)3)
k=0:4cis((π3)+2π(0)3)
Step 9.4
Evaluate the exponent.
k=0:4cis((π3)+2π(0)3)
Step 9.5
Multiply 2π(0).
Step 9.5.1
Multiply 0 by 2.
k=0:4cis(π3+0π3)
Step 9.5.2
Multiply 0 by π.
k=0:4cis(π3+03)
k=0:4cis(π3+03)
Step 9.6
Add π3 and 0.
k=0:4cis(π33)
Step 9.7
Multiply the numerator by the reciprocal of the denominator.
k=0:4cis(π3⋅13)
Step 9.8
Multiply π3⋅13.
Step 9.8.1
Multiply π3 by 13.
k=0:4cis(π3⋅3)
Step 9.8.2
Multiply 3 by 3.
k=0:4cis(π9)
k=0:4cis(π9)
k=0:4cis(π9)
Step 10
Step 10.1
Rewrite 64 as 43.
k=1:(43)13cis((π3)+2π(1)3)
Step 10.2
Apply the power rule and multiply exponents, (am)n=amn.
k=1:43(13)cis((π3)+2π(1)3)
Step 10.3
Cancel the common factor of 3.
Step 10.3.1
Cancel the common factor.
k=1:43(13)cis((π3)+2π(1)3)
Step 10.3.2
Rewrite the expression.
k=1:4cis((π3)+2π(1)3)
k=1:4cis((π3)+2π(1)3)
Step 10.4
Evaluate the exponent.
k=1:4cis((π3)+2π(1)3)
Step 10.5
Multiply 2 by 1.
k=1:4cis(π3+2π3)
Step 10.6
To write 2π as a fraction with a common denominator, multiply by 33.
k=1:4cis(π3+2π⋅333)
Step 10.7
Combine 2π and 33.
k=1:4cis(π3+2π⋅333)
Step 10.8
Combine the numerators over the common denominator.
k=1:4cis(π+2π⋅333)
Step 10.9
Simplify the numerator.
Step 10.9.1
Multiply 3 by 2.
k=1:4cis(π+6π33)
Step 10.9.2
Add π and 6π.
k=1:4cis(7π33)
k=1:4cis(7π33)
Step 10.10
Multiply the numerator by the reciprocal of the denominator.
k=1:4cis(7π3⋅13)
Step 10.11
Multiply 7π3⋅13.
Step 10.11.1
Multiply 7π3 by 13.
k=1:4cis(7π3⋅3)
Step 10.11.2
Multiply 3 by 3.
k=1:4cis(7π9)
k=1:4cis(7π9)
k=1:4cis(7π9)
Step 11
Step 11.1
Rewrite 64 as 43.
k=2:(43)13cis((π3)+2π(2)3)
Step 11.2
Apply the power rule and multiply exponents, (am)n=amn.
k=2:43(13)cis((π3)+2π(2)3)
Step 11.3
Cancel the common factor of 3.
Step 11.3.1
Cancel the common factor.
k=2:43(13)cis((π3)+2π(2)3)
Step 11.3.2
Rewrite the expression.
k=2:4cis((π3)+2π(2)3)
k=2:4cis((π3)+2π(2)3)
Step 11.4
Evaluate the exponent.
k=2:4cis((π3)+2π(2)3)
Step 11.5
Multiply 2 by 2.
k=2:4cis(π3+4π3)
Step 11.6
To write 4π as a fraction with a common denominator, multiply by 33.
k=2:4cis(π3+4π⋅333)
Step 11.7
Combine 4π and 33.
k=2:4cis(π3+4π⋅333)
Step 11.8
Combine the numerators over the common denominator.
k=2:4cis(π+4π⋅333)
Step 11.9
Simplify the numerator.
Step 11.9.1
Multiply 3 by 4.
k=2:4cis(π+12π33)
Step 11.9.2
Add π and 12π.
k=2:4cis(13π33)
k=2:4cis(13π33)
Step 11.10
Multiply the numerator by the reciprocal of the denominator.
k=2:4cis(13π3⋅13)
Step 11.11
Multiply 13π3⋅13.
Step 11.11.1
Multiply 13π3 by 13.
k=2:4cis(13π3⋅3)
Step 11.11.2
Multiply 3 by 3.
k=2:4cis(13π9)
k=2:4cis(13π9)
k=2:4cis(13π9)
Step 12
List the solutions.
k=0:4cis(π9)
k=1:4cis(7π9)
k=2:4cis(13π9)