Trigonometry Examples

Find the Cube Roots of a Complex Number
32+32i332+32i3 , n=3n=3
Step 1
Calculate the distance from (a,b)(a,b) to the origin using the formula r=a2+b2r=a2+b2.
r=322+(332)2r=322+(332)2
Step 2
Simplify 322+(332)2322+(332)2.
Tap for more steps...
Step 2.1
Simplify the expression.
Tap for more steps...
Step 2.1.1
Raise 3232 to the power of 22.
r=1024+(332)2r=1024+(332)2
Step 2.1.2
Move 3232 to the left of 33.
r=1024+(323)2r=1024+(323)2
Step 2.1.3
Apply the product rule to 323323.
r=1024+32232r=1024+32232
Step 2.1.4
Raise 3232 to the power of 22.
r=1024+102432r=1024+102432
r=1024+102432r=1024+102432
Step 2.2
Rewrite 3232 as 33.
Tap for more steps...
Step 2.2.1
Use nax=axnnax=axn to rewrite 33 as 312312.
r=1024+1024(312)2r=1024+1024(312)2
Step 2.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
r=1024+10243122r=1024+10243122
Step 2.2.3
Combine 1212 and 22.
r=1024+1024322r=1024+1024322
Step 2.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.2.4.1
Cancel the common factor.
r=1024+1024322
Step 2.2.4.2
Rewrite the expression.
r=1024+102431
r=1024+102431
Step 2.2.5
Evaluate the exponent.
r=1024+10243
r=1024+10243
Step 2.3
Simplify the expression.
Tap for more steps...
Step 2.3.1
Multiply 1024 by 3.
r=1024+3072
Step 2.3.2
Add 1024 and 3072.
r=4096
Step 2.3.3
Rewrite 4096 as 642.
r=642
Step 2.3.4
Pull terms out from under the radical, assuming positive real numbers.
r=64
r=64
r=64
Step 3
Calculate reference angle θ̂=arctan(|ba|).
θ̂=arctan(|33232|)
Step 4
Simplify arctan(|33232|).
Tap for more steps...
Step 4.1
Cancel the common factor of 32.
Tap for more steps...
Step 4.1.1
Cancel the common factor.
θ̂=arctan(|33232|)
Step 4.1.2
Divide 3 by 1.
θ̂=arctan(|3|)
θ̂=arctan(|3|)
Step 4.2
3 is approximately 1.7320508 which is positive so remove the absolute value
θ̂=arctan(3)
Step 4.3
The exact value of arctan(3) is π3.
θ̂=π3
θ̂=π3
Step 5
Find the quadrant.
Tap for more steps...
Step 5.1
Move 32 to the left of 3.
(32,323)
Step 5.2
The point is located in the first quadrant because x and y are both positive. The quadrants are labeled in counter-clockwise order, starting in the upper-right.
Quadrant 1
Quadrant 1
Step 6
(a,b) is in the first quadrant. θ=θ̂
θ=π3
Step 7
Use the formula to find the roots of the complex number.
(a+bi)1n=r1ncis(θ+2πkn), k=0,1,,n-1
Step 8
Substitute r, n, and θ into the formula.
Tap for more steps...
Step 8.1
Combine (64)13 and (π3)+2πk3.
cis(64)13((π3)+2πk)3
Step 8.2
Combine c and (64)13((π3)+2πk)3.
isc((64)13((π3)+2πk))3
Step 8.3
Combine i and c((64)13((π3)+2πk))3.
si(c((64)13((π3)+2πk)))3
Step 8.4
Combine s and i(c((64)13((π3)+2πk)))3.
s(i(c((64)13((π3)+2πk))))3
Step 8.5
Remove parentheses.
Tap for more steps...
Step 8.5.1
Remove parentheses.
s(i(c(6413((π3)+2πk))))3
Step 8.5.2
Remove parentheses.
s(i(c(6413(π3+2πk))))3
Step 8.5.3
Remove parentheses.
s(i(c6413(π3+2πk)))3
Step 8.5.4
Remove parentheses.
s(i(c6413)(π3+2πk))3
Step 8.5.5
Remove parentheses.
s(ic6413(π3+2πk))3
Step 8.5.6
Remove parentheses.
s(ic6413)(π3+2πk)3
Step 8.5.7
Remove parentheses.
s(ic)6413(π3+2πk)3
Step 8.5.8
Remove parentheses.
sic6413(π3+2πk)3
sic6413(π3+2πk)3
sic6413(π3+2πk)3
Step 9
Substitute k=0 into the formula and simplify.
Tap for more steps...
Step 9.1
Rewrite 64 as 43.
k=0:(43)13cis((π3)+2π(0)3)
Step 9.2
Apply the power rule and multiply exponents, (am)n=amn.
k=0:43(13)cis((π3)+2π(0)3)
Step 9.3
Cancel the common factor of 3.
Tap for more steps...
Step 9.3.1
Cancel the common factor.
k=0:43(13)cis((π3)+2π(0)3)
Step 9.3.2
Rewrite the expression.
k=0:4cis((π3)+2π(0)3)
k=0:4cis((π3)+2π(0)3)
Step 9.4
Evaluate the exponent.
k=0:4cis((π3)+2π(0)3)
Step 9.5
Multiply 2π(0).
Tap for more steps...
Step 9.5.1
Multiply 0 by 2.
k=0:4cis(π3+0π3)
Step 9.5.2
Multiply 0 by π.
k=0:4cis(π3+03)
k=0:4cis(π3+03)
Step 9.6
Add π3 and 0.
k=0:4cis(π33)
Step 9.7
Multiply the numerator by the reciprocal of the denominator.
k=0:4cis(π313)
Step 9.8
Multiply π313.
Tap for more steps...
Step 9.8.1
Multiply π3 by 13.
k=0:4cis(π33)
Step 9.8.2
Multiply 3 by 3.
k=0:4cis(π9)
k=0:4cis(π9)
k=0:4cis(π9)
Step 10
Substitute k=1 into the formula and simplify.
Tap for more steps...
Step 10.1
Rewrite 64 as 43.
k=1:(43)13cis((π3)+2π(1)3)
Step 10.2
Apply the power rule and multiply exponents, (am)n=amn.
k=1:43(13)cis((π3)+2π(1)3)
Step 10.3
Cancel the common factor of 3.
Tap for more steps...
Step 10.3.1
Cancel the common factor.
k=1:43(13)cis((π3)+2π(1)3)
Step 10.3.2
Rewrite the expression.
k=1:4cis((π3)+2π(1)3)
k=1:4cis((π3)+2π(1)3)
Step 10.4
Evaluate the exponent.
k=1:4cis((π3)+2π(1)3)
Step 10.5
Multiply 2 by 1.
k=1:4cis(π3+2π3)
Step 10.6
To write 2π as a fraction with a common denominator, multiply by 33.
k=1:4cis(π3+2π333)
Step 10.7
Combine 2π and 33.
k=1:4cis(π3+2π333)
Step 10.8
Combine the numerators over the common denominator.
k=1:4cis(π+2π333)
Step 10.9
Simplify the numerator.
Tap for more steps...
Step 10.9.1
Multiply 3 by 2.
k=1:4cis(π+6π33)
Step 10.9.2
Add π and 6π.
k=1:4cis(7π33)
k=1:4cis(7π33)
Step 10.10
Multiply the numerator by the reciprocal of the denominator.
k=1:4cis(7π313)
Step 10.11
Multiply 7π313.
Tap for more steps...
Step 10.11.1
Multiply 7π3 by 13.
k=1:4cis(7π33)
Step 10.11.2
Multiply 3 by 3.
k=1:4cis(7π9)
k=1:4cis(7π9)
k=1:4cis(7π9)
Step 11
Substitute k=2 into the formula and simplify.
Tap for more steps...
Step 11.1
Rewrite 64 as 43.
k=2:(43)13cis((π3)+2π(2)3)
Step 11.2
Apply the power rule and multiply exponents, (am)n=amn.
k=2:43(13)cis((π3)+2π(2)3)
Step 11.3
Cancel the common factor of 3.
Tap for more steps...
Step 11.3.1
Cancel the common factor.
k=2:43(13)cis((π3)+2π(2)3)
Step 11.3.2
Rewrite the expression.
k=2:4cis((π3)+2π(2)3)
k=2:4cis((π3)+2π(2)3)
Step 11.4
Evaluate the exponent.
k=2:4cis((π3)+2π(2)3)
Step 11.5
Multiply 2 by 2.
k=2:4cis(π3+4π3)
Step 11.6
To write 4π as a fraction with a common denominator, multiply by 33.
k=2:4cis(π3+4π333)
Step 11.7
Combine 4π and 33.
k=2:4cis(π3+4π333)
Step 11.8
Combine the numerators over the common denominator.
k=2:4cis(π+4π333)
Step 11.9
Simplify the numerator.
Tap for more steps...
Step 11.9.1
Multiply 3 by 4.
k=2:4cis(π+12π33)
Step 11.9.2
Add π and 12π.
k=2:4cis(13π33)
k=2:4cis(13π33)
Step 11.10
Multiply the numerator by the reciprocal of the denominator.
k=2:4cis(13π313)
Step 11.11
Multiply 13π313.
Tap for more steps...
Step 11.11.1
Multiply 13π3 by 13.
k=2:4cis(13π33)
Step 11.11.2
Multiply 3 by 3.
k=2:4cis(13π9)
k=2:4cis(13π9)
k=2:4cis(13π9)
Step 12
List the solutions.
k=0:4cis(π9)
k=1:4cis(7π9)
k=2:4cis(13π9)
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay