Trigonometry Examples
3x3-2x2+3x-4x-33x3−2x2+3x−4x−3
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 |
Step 2
Divide the highest order term in the dividend 3x33x3 by the highest order term in divisor xx.
3x23x2 | |||||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 |
Step 3
Multiply the new quotient term by the divisor.
3x23x2 | |||||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
+ | 3x33x3 | - | 9x29x2 |
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in 3x3-9x23x3−9x2
3x23x2 | |||||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 |
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x23x2 | |||||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 |
Step 6
Pull the next terms from the original dividend down into the current dividend.
3x23x2 | |||||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x |
Step 7
Divide the highest order term in the dividend 7x27x2 by the highest order term in divisor xx.
3x23x2 | + | 7x7x | |||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x |
Step 8
Multiply the new quotient term by the divisor.
3x23x2 | + | 7x7x | |||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x | ||||||||
+ | 7x27x2 | - | 21x21x |
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in 7x2-21x7x2−21x
3x23x2 | + | 7x7x | |||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x | ||||||||
- | 7x27x2 | + | 21x21x |
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x23x2 | + | 7x7x | |||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x | ||||||||
- | 7x27x2 | + | 21x21x | ||||||||
+ | 24x24x |
Step 11
Pull the next terms from the original dividend down into the current dividend.
3x23x2 | + | 7x7x | |||||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x | ||||||||
- | 7x27x2 | + | 21x21x | ||||||||
+ | 24x24x | - | 44 |
Step 12
Divide the highest order term in the dividend 24x24x by the highest order term in divisor xx.
3x23x2 | + | 7x7x | + | 2424 | |||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x | ||||||||
- | 7x27x2 | + | 21x21x | ||||||||
+ | 24x24x | - | 44 |
Step 13
Multiply the new quotient term by the divisor.
3x23x2 | + | 7x7x | + | 2424 | |||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x | ||||||||
- | 7x27x2 | + | 21x21x | ||||||||
+ | 24x24x | - | 44 | ||||||||
+ | 24x24x | - | 7272 |
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in 24x-7224x−72
3x23x2 | + | 7x7x | + | 2424 | |||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x | ||||||||
- | 7x27x2 | + | 21x21x | ||||||||
+ | 24x24x | - | 44 | ||||||||
- | 24x24x | + | 7272 |
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x23x2 | + | 7x7x | + | 2424 | |||||||
xx | - | 33 | 3x33x3 | - | 2x22x2 | + | 3x3x | - | 44 | ||
- | 3x33x3 | + | 9x29x2 | ||||||||
+ | 7x27x2 | + | 3x3x | ||||||||
- | 7x27x2 | + | 21x21x | ||||||||
+ | 24x24x | - | 44 | ||||||||
- | 24x24x | + | 7272 | ||||||||
+ | 6868 |
Step 16
The final answer is the quotient plus the remainder over the divisor.
3x2+7x+24+68x-33x2+7x+24+68x−3