Statistics Examples
xP(x)70.2110.1140.3170.2200.2xP(x)70.2110.1140.3170.2200.2
Step 1
Step 1.1
A discrete random variable xx takes a set of separate values (such as 00, 11, 22...). Its probability distribution assigns a probability P(x)P(x) to each possible value xx. For each xx, the probability P(x)P(x) falls between 00 and 11 inclusive and the sum of the probabilities for all the possible xx values equals to 11.
1. For each xx, 0≤P(x)≤10≤P(x)≤1.
2. P(x0)+P(x1)+P(x2)+…+P(xn)=1P(x0)+P(x1)+P(x2)+…+P(xn)=1.
Step 1.2
0.20.2 is between 00 and 11 inclusive, which meets the first property of the probability distribution.
0.20.2 is between 00 and 11 inclusive
Step 1.3
0.10.1 is between 00 and 11 inclusive, which meets the first property of the probability distribution.
0.10.1 is between 00 and 11 inclusive
Step 1.4
0.30.3 is between 00 and 11 inclusive, which meets the first property of the probability distribution.
0.30.3 is between 00 and 11 inclusive
Step 1.5
0.20.2 is between 00 and 11 inclusive, which meets the first property of the probability distribution.
0.20.2 is between 00 and 11 inclusive
Step 1.6
For each xx, the probability P(x)P(x) falls between 00 and 11 inclusive, which meets the first property of the probability distribution.
0≤P(x)≤10≤P(x)≤1 for all x values
Step 1.7
Find the sum of the probabilities for all the possible xx values.
0.2+0.1+0.3+0.2+0.20.2+0.1+0.3+0.2+0.2
Step 1.8
The sum of the probabilities for all the possible xx values is 0.2+0.1+0.3+0.2+0.2=10.2+0.1+0.3+0.2+0.2=1.
Step 1.8.1
Add 0.20.2 and 0.10.1.
0.3+0.3+0.2+0.20.3+0.3+0.2+0.2
Step 1.8.2
Add 0.30.3 and 0.30.3.
0.6+0.2+0.20.6+0.2+0.2
Step 1.8.3
Add 0.60.6 and 0.20.2.
0.8+0.20.8+0.2
Step 1.8.4
Add 0.80.8 and 0.20.2.
11
11
Step 1.9
For each xx, the probability of P(x)P(x) falls between 00 and 11 inclusive. In addition, the sum of the probabilities for all the possible xx equals 11, which means that the table satisfies the two properties of a probability distribution.
The table satisfies the two properties of a probability distribution:
Property 1: 0≤P(x)≤10≤P(x)≤1 for all xx values
Property 2: 0.2+0.1+0.3+0.2+0.2=10.2+0.1+0.3+0.2+0.2=1
The table satisfies the two properties of a probability distribution:
Property 1: 0≤P(x)≤10≤P(x)≤1 for all xx values
Property 2: 0.2+0.1+0.3+0.2+0.2=10.2+0.1+0.3+0.2+0.2=1
Step 2
The expectation mean of a distribution is the value expected if trials of the distribution could continue indefinitely. This is equal to each value multiplied by its discrete probability.
u=7⋅0.2+11⋅0.1+14⋅0.3+17⋅0.2+20⋅0.2u=7⋅0.2+11⋅0.1+14⋅0.3+17⋅0.2+20⋅0.2
Step 3
Step 3.1
Multiply 77 by 0.20.2.
u=1.4+11⋅0.1+14⋅0.3+17⋅0.2+20⋅0.2u=1.4+11⋅0.1+14⋅0.3+17⋅0.2+20⋅0.2
Step 3.2
Multiply 1111 by 0.10.1.
u=1.4+1.1+14⋅0.3+17⋅0.2+20⋅0.2u=1.4+1.1+14⋅0.3+17⋅0.2+20⋅0.2
Step 3.3
Multiply 1414 by 0.30.3.
u=1.4+1.1+4.2+17⋅0.2+20⋅0.2u=1.4+1.1+4.2+17⋅0.2+20⋅0.2
Step 3.4
Multiply 1717 by 0.20.2.
u=1.4+1.1+4.2+3.4+20⋅0.2u=1.4+1.1+4.2+3.4+20⋅0.2
Step 3.5
Multiply 2020 by 0.20.2.
u=1.4+1.1+4.2+3.4+4u=1.4+1.1+4.2+3.4+4
u=1.4+1.1+4.2+3.4+4u=1.4+1.1+4.2+3.4+4
Step 4
Step 4.1
Add 1.41.4 and 1.11.1.
u=2.5+4.2+3.4+4u=2.5+4.2+3.4+4
Step 4.2
Add 2.52.5 and 4.24.2.
u=6.7+3.4+4u=6.7+3.4+4
Step 4.3
Add 6.76.7 and 3.43.4.
u=10.1+4u=10.1+4
Step 4.4
Add 10.110.1 and 44.
u=14.1u=14.1
u=14.1u=14.1
Step 5
The variance of a distribution is a measure of the dispersion and is equal to the square of the standard deviation.
s2=∑(x-u)2⋅(P(x))s2=∑(x−u)2⋅(P(x))
Step 6
Fill in the known values.
(7-(14.1))2⋅0.2+(11-(14.1))2⋅0.1+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.2(7−(14.1))2⋅0.2+(11−(14.1))2⋅0.1+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7
Step 7.1
Simplify each term.
Step 7.1.1
Multiply -1−1 by 14.114.1.
(7-14.1)2⋅0.2+(11-(14.1))2⋅0.1+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.2(7−14.1)2⋅0.2+(11−(14.1))2⋅0.1+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.2
Subtract 14.114.1 from 77.
(-7.1)2⋅0.2+(11-(14.1))2⋅0.1+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.2(−7.1)2⋅0.2+(11−(14.1))2⋅0.1+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.3
Raise -7.1−7.1 to the power of 22.
50.41⋅0.2+(11-(14.1))2⋅0.1+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.250.41⋅0.2+(11−(14.1))2⋅0.1+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.4
Multiply 50.4150.41 by 0.20.2.
10.082+(11-(14.1))2⋅0.1+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+(11−(14.1))2⋅0.1+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.5
Multiply -1−1 by 14.114.1.
10.082+(11-14.1)2⋅0.1+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+(11−14.1)2⋅0.1+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.6
Subtract 14.114.1 from 1111.
10.082+(-3.1)2⋅0.1+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+(−3.1)2⋅0.1+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.7
Raise -3.1−3.1 to the power of 22.
10.082+9.61⋅0.1+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+9.61⋅0.1+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.8
Multiply 9.619.61 by 0.10.1.
10.082+0.961+(14-(14.1))2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+0.961+(14−(14.1))2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.9
Multiply -1−1 by 14.114.1.
10.082+0.961+(14-14.1)2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+0.961+(14−14.1)2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.10
Subtract 14.114.1 from 1414.
10.082+0.961+(-0.1)2⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+0.961+(−0.1)2⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.11
Raise -0.1−0.1 to the power of 22.
10.082+0.961+0.01⋅0.3+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+0.961+0.01⋅0.3+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.12
Multiply 0.010.01 by 0.30.3.
10.082+0.961+0.003+(17-(14.1))2⋅0.2+(20-(14.1))2⋅0.210.082+0.961+0.003+(17−(14.1))2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.13
Multiply -1−1 by 14.114.1.
10.082+0.961+0.003+(17-14.1)2⋅0.2+(20-(14.1))2⋅0.210.082+0.961+0.003+(17−14.1)2⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.14
Subtract 14.114.1 from 1717.
10.082+0.961+0.003+2.92⋅0.2+(20-(14.1))2⋅0.210.082+0.961+0.003+2.92⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.15
Raise 2.92.9 to the power of 22.
10.082+0.961+0.003+8.41⋅0.2+(20-(14.1))2⋅0.210.082+0.961+0.003+8.41⋅0.2+(20−(14.1))2⋅0.2
Step 7.1.16
Multiply 8.418.41 by 0.20.2.
10.082+0.961+0.003+1.682+(20-(14.1))2⋅0.210.082+0.961+0.003+1.682+(20−(14.1))2⋅0.2
Step 7.1.17
Multiply -1−1 by 14.114.1.
10.082+0.961+0.003+1.682+(20-14.1)2⋅0.210.082+0.961+0.003+1.682+(20−14.1)2⋅0.2
Step 7.1.18
Subtract 14.114.1 from 2020.
10.082+0.961+0.003+1.682+5.92⋅0.210.082+0.961+0.003+1.682+5.92⋅0.2
Step 7.1.19
Raise 5.9 to the power of 2.
10.082+0.961+0.003+1.682+34.81⋅0.2
Step 7.1.20
Multiply 34.81 by 0.2.
10.082+0.961+0.003+1.682+6.962
10.082+0.961+0.003+1.682+6.962
Step 7.2
Simplify by adding numbers.
Step 7.2.1
Add 10.082 and 0.961.
11.043+0.003+1.682+6.962
Step 7.2.2
Add 11.043 and 0.003.
11.046+1.682+6.962
Step 7.2.3
Add 11.046 and 1.682.
12.728+6.962
Step 7.2.4
Add 12.728 and 6.962.
19.69
19.69
19.69