Statistics Examples

Find the Variance of the Frequency Table
ClassFrequency21011119320289
Step 1
Find the midpoint M for each group.
Tap for more steps...
Step 1.1
The lower limit for every class is the smallest value in that class. On the other hand, the upper limit for every class is the greatest value in that class.
ClassFrequency(f)LowerLimitsUpperLimits2101210111931119202892028
Step 1.2
The class midpoint is the lower class limit plus the upper class limit divided by 2.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)21012102+10211193111911+19220289202820+282
Step 1.3
Simplify all the midpoint column.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)210121061119311191520289202824
Step 1.4
Add the midpoints column to the original table.
ClassFrequency(f)Midpoint(M)2101611193152028924
ClassFrequency(f)Midpoint(M)2101611193152028924
Step 2
Calculate the square of each group midpoint M2.
ClassFrequency(f)Midpoint(M)M2210166211193151522028924242
Step 3
Simplify the M2 column.
ClassFrequency(f)Midpoint(M)M2210163611193152252028924576
Step 4
Multiply each midpoint squared by its frequency f.
ClassFrequency(f)Midpoint(M)M2fM221016361361119315225322520289245769576
Step 5
Simplify the fM2 column.
ClassFrequency(f)Midpoint(M)M2fM2210163636111931522567520289245765184
Step 6
Find the sum of all frequencies. In this case, the sum of all frequencies is n=1,3,9=13.
f=n=13
Step 7
Find the sum of fM2 column. In this case, 36+675+5184=5895.
fM2=5895
Step 8
Find the mean μ.
Tap for more steps...
Step 8.1
Find the midpoint M for each class.
ClassFrequency(f)Midpoint(M)2101611193152028924
Step 8.2
Multiply the frequency of each class by the class midpoint.
ClassFrequency(f)Midpoint(M)fM210161611193153152028924924
Step 8.3
Simplify the fM column.
ClassFrequency(f)Midpoint(M)fM2101661119315452028924216
Step 8.4
Add the values in the fM column.
6+45+216=267
Step 8.5
Add the values in the frequency column.
n=1+3+9=13
Step 8.6
The mean (mu) is the sum of fM divided by n, which is the sum of frequencies.
μ=fMf
Step 8.7
The mean is the sum of the product of the midpoints and frequencies divided by the total of frequencies.
μ=26713
Step 8.8
Simplify the right side of μ=26713.
20.53846153
20.53846153
Step 9
The equation for the standard deviation is S2=fM2n(μ)2n1.
S2=fM2n(μ)2n1
Step 10
Substitute the calculated values into S2=fM2n(μ)2n1.
S2=589513(20.53846153)2131
Step 11
Simplify the right side of S2=589513(20.53846153)2131 to get the variance S2=34.26923076.
34.26923076
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay