Statistics Examples
ClassFrequency2−10111−19320−289
Step 1
Step 1.1
The lower limit for every class is the smallest value in that class. On the other hand, the upper limit for every class is the greatest value in that class.
ClassFrequency(f)LowerLimitsUpperLimits2−10121011−193111920−2892028
Step 1.2
The class midpoint is the lower class limit plus the upper class limit divided by 2.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)2−1012102+10211−193111911+19220−289202820+282
Step 1.3
Simplify all the midpoint column.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)2−101210611−19311191520−289202824
Step 1.4
Add the midpoints column to the original table.
ClassFrequency(f)Midpoint(M)2−101611−1931520−28924
ClassFrequency(f)Midpoint(M)2−101611−1931520−28924
Step 2
Calculate the square of each group midpoint M2.
ClassFrequency(f)Midpoint(M)M22−10166211−1931515220−28924242
Step 3
Simplify the M2 column.
ClassFrequency(f)Midpoint(M)M22−10163611−1931522520−28924576
Step 4
Multiply each midpoint squared by its frequency f.
ClassFrequency(f)Midpoint(M)M2f⋅M22−1016361⋅3611−193152253⋅22520−289245769⋅576
Step 5
Simplify the f⋅M2 column.
ClassFrequency(f)Midpoint(M)M2f⋅M22−1016363611−1931522567520−289245765184
Step 6
Find the sum of all frequencies. In this case, the sum of all frequencies is n=1,3,9=13.
∑f=n=13
Step 7
Find the sum of f⋅M2 column. In this case, 36+675+5184=5895.
∑f⋅M2=5895
Step 8
Step 8.1
Find the midpoint M for each class.
ClassFrequency(f)Midpoint(M)2−101611−1931520−28924
Step 8.2
Multiply the frequency of each class by the class midpoint.
ClassFrequency(f)Midpoint(M)f⋅M2−10161⋅611−193153⋅1520−289249⋅24
Step 8.3
Simplify the f⋅M column.
ClassFrequency(f)Midpoint(M)f⋅M2−1016611−193154520−28924216
Step 8.4
Add the values in the f⋅M column.
6+45+216=267
Step 8.5
Add the values in the frequency column.
n=1+3+9=13
Step 8.6
The mean (mu) is the sum of f⋅M divided by n, which is the sum of frequencies.
μ=∑f⋅M∑f
Step 8.7
The mean is the sum of the product of the midpoints and frequencies divided by the total of frequencies.
μ=26713
Step 8.8
Simplify the right side of μ=26713.
20.53846153
20.53846153
Step 9
The equation for the standard deviation is S2=∑f⋅M2−n(μ)2n−1.
S2=∑f⋅M2−n(μ)2n−1
Step 10
Substitute the calculated values into S2=∑f⋅M2−n(μ)2n−1.
S2=5895−13(20.53846153)213−1
Step 11
Simplify the right side of S2=5895−13(20.53846153)213−1 to get the variance S2=34.26923076.
34.26923076