Statistics Examples

Find the Standard Deviation of the Frequency Table
ClassFrequency12-17318-23624-29430-352ClassFrequency12173182362429430352
Step 1
Find the midpoint MM for each group.
Tap for more steps...
Step 1.1
The lower limit for every class is the smallest value in that class. On the other hand, the upper limit for every class is the greatest value in that class.
ClassFrequency(f)LowerLimitsUpperLimits12-173121718-236182324-294242930-3523035ClassFrequency(f)LowerLimitsUpperLimits121731217182361823242942429303523035
Step 1.2
The class midpoint is the lower class limit plus the upper class limit divided by 22.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)12-173121712+17218-236182318+23224-294242924+29230-352303530+352ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)12173121712+17218236182318+23224294242924+29230352303530+352
Step 1.3
Simplify all the midpoint column.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)12-173121714.518-236182320.524-294242926.530-352303532.5ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)12173121714.518236182320.524294242926.530352303532.5
Step 1.4
Add the midpoints column to the original table.
ClassFrequency(f)Midpoint(M)12-17314.518-23620.524-29426.530-35232.5ClassFrequency(f)Midpoint(M)1217314.51823620.52429426.53035232.5
ClassFrequency(f)Midpoint(M)12-17314.518-23620.524-29426.530-35232.5ClassFrequency(f)Midpoint(M)1217314.51823620.52429426.53035232.5
Step 2
Calculate the square of each group midpoint M2M2.
ClassFrequency(f)Midpoint(M)M212-17314.514.5218-23620.520.5224-29426.526.5230-35232.532.52ClassFrequency(f)Midpoint(M)M21217314.514.521823620.520.522429426.526.523035232.532.52
Step 3
Simplify the M2M2 column.
ClassFrequency(f)Midpoint(M)M212-17314.5210.2518-23620.5420.2524-29426.5702.2530-35232.51056.25ClassFrequency(f)Midpoint(M)M21217314.5210.251823620.5420.252429426.5702.253035232.51056.25
Step 4
Multiply each midpoint squared by its frequency ff.
ClassFrequency(f)Midpoint(M)M2fM212-17314.5210.253210.2518-23620.5420.256420.2524-29426.5702.254702.2530-35232.51056.2521056.25ClassFrequency(f)Midpoint(M)M2fM21217314.5210.253210.251823620.5420.256420.252429426.5702.254702.253035232.51056.2521056.25
Step 5
Simplify the fM2fM2 column.
ClassFrequency(f)Midpoint(M)M2fM212-17314.5210.25630.7518-23620.5420.252521.524-29426.5702.25280930-35232.51056.252112.5ClassFrequency(f)Midpoint(M)M2fM21217314.5210.25630.751823620.5420.252521.52429426.5702.2528093035232.51056.252112.5
Step 6
Find the sum of all frequencies. In this case, the sum of all frequencies is n=3,6,4,2=15n=3,6,4,2=15.
f=n=15f=n=15
Step 7
Find the sum of fM2fM2 column. In this case, 630.75+2521.5+2809+2112.5=8073.75630.75+2521.5+2809+2112.5=8073.75.
fM2=8073.75fM2=8073.75
Step 8
Find the mean μμ.
Tap for more steps...
Step 8.1
Find the midpoint MM for each class.
ClassFrequency(f)Midpoint(M)12-17314.518-23620.524-29426.530-35232.5ClassFrequency(f)Midpoint(M)1217314.51823620.52429426.53035232.5
Step 8.2
Multiply the frequency of each class by the class midpoint.
ClassFrequency(f)Midpoint(M)fM12-17314.5314.518-23620.5620.524-29426.5426.530-35232.5232.5ClassFrequency(f)Midpoint(M)fM1217314.5314.51823620.5620.52429426.5426.53035232.5232.5
Step 8.3
Simplify the fMfM column.
ClassFrequency(f)Midpoint(M)fM12-17314.543.518-23620.512324-29426.510630-35232.565ClassFrequency(f)Midpoint(M)fM1217314.543.51823620.51232429426.51063035232.565
Step 8.4
Add the values in the fMfM column.
43.5+123+106+65=337.543.5+123+106+65=337.5
Step 8.5
Add the values in the frequency column.
n=3+6+4+2=15n=3+6+4+2=15
Step 8.6
The mean (mu) is the sum of fMfM divided by nn, which is the sum of frequencies.
μ=fMfμ=fMf
Step 8.7
The mean is the sum of the product of the midpoints and frequencies divided by the total of frequencies.
μ=337.515μ=337.515
Step 8.8
Simplify the right side of μ=337.515μ=337.515.
22.522.5
22.522.5
Step 9
The equation for the standard deviation is S2=fM2-n(μ)2n-1S2=fM2n(μ)2n1.
S2=fM2-n(μ)2n-1S2=fM2n(μ)2n1
Step 10
Substitute the calculated values into S2=fM2-n(μ)2n-1S2=fM2n(μ)2n1.
S2=8073.75-15(22.5)215-1S2=8073.7515(22.5)2151
Step 11
Simplify the right side of S2=8073.75-15(22.5)215-1S2=8073.7515(22.5)2151 to get the variance S2=34.285714S2=34.¯¯¯¯¯¯¯¯¯¯¯¯285714.
34.2857142834.28571428
Step 12
The standard deviation is the square root of the variance 34.28571434.¯¯¯¯¯¯¯¯¯¯¯¯285714. In this case, the standard deviation is 5.855400435.85540043.
5.855400435.85540043
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay