Statistics Examples
ClassFrequency90-99480-89670-79460-69350-59240-491ClassFrequency90−99480−89670−79460−69350−59240−491
Step 1
Reorder the classes with their related frequencies (ƒ) in an ascending order (lowest number to highest), which is the most common.
ClassFrequency(f)40-49150-59260-69370-79480-89690-994ClassFrequency(f)40−49150−59260−69370−79480−89690−994
Step 2
Find the midpoint MM for each class.
ClassFrequency(f)Midpoint(M)40-49144.550-59254.560-69364.570-79474.580-89684.590-99494.5ClassFrequency(f)Midpoint(M)40−49144.550−59254.560−69364.570−79474.580−89684.590−99494.5
Step 3
Multiply the frequency of each class by the class midpoint.
ClassFrequency(f)Midpoint(M)f⋅M40-49144.51⋅44.550-59254.52⋅54.560-69364.53⋅64.570-79474.54⋅74.580-89684.56⋅84.590-99494.54⋅94.5ClassFrequency(f)Midpoint(M)f⋅M40−49144.51⋅44.550−59254.52⋅54.560−69364.53⋅64.570−79474.54⋅74.580−89684.56⋅84.590−99494.54⋅94.5
Step 4
Simplify the f⋅Mf⋅M column.
ClassFrequency(f)Midpoint(M)f⋅M40-49144.544.550-59254.510960-69364.5193.570-79474.529880-89684.550790-99494.5378ClassFrequency(f)Midpoint(M)f⋅M40−49144.544.550−59254.510960−69364.5193.570−79474.529880−89684.550790−99494.5378
Step 5
Add the values in the f⋅Mf⋅M column.
44.5+109+193.5+298+507+378=153044.5+109+193.5+298+507+378=1530
Step 6
Add the values in the frequency column.
n=1+2+3+4+6+4=20n=1+2+3+4+6+4=20
Step 7
The mean (mu) is the sum of f⋅Mf⋅M divided by nn, which is the sum of frequencies.
μ=∑f⋅M∑fμ=∑f⋅M∑f
Step 8
The mean is the sum of the product of the midpoints and frequencies divided by the total of frequencies.
μ=153020μ=153020
Step 9
Simplify the right side of μ=153020μ=153020.
76.576.5