Statistics Examples
1212 , 1515 , 4545 , 6565 , 7878
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=12+15+45+65+785¯x=12+15+45+65+785
Step 2
Step 2.1
Add 1212 and 1515.
‾x=27+45+65+785¯x=27+45+65+785
Step 2.2
Add 2727 and 4545.
‾x=72+65+785¯x=72+65+785
Step 2.3
Add 7272 and 6565.
‾x=137+785¯x=137+785
Step 2.4
Add 137137 and 7878.
‾x=2155¯x=2155
‾x=2155¯x=2155
Step 3
Divide 215215 by 55.
‾x=43¯x=43
Step 4
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=n∑i=1(xi-xavg)2n-1s2=n∑i=1(xi−xavg)2n−1
Step 5
Set up the formula for variance for this set of numbers.
s=(12-43)2+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=(12−43)2+(15−43)2+(45−43)2+(65−43)2+(78−43)25−1
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Subtract 4343 from 1212.
s=(-31)2+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=(−31)2+(15−43)2+(45−43)2+(65−43)2+(78−43)25−1
Step 6.1.2
Raise -31−31 to the power of 22.
s=961+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=961+(15−43)2+(45−43)2+(65−43)2+(78−43)25−1
Step 6.1.3
Subtract 4343 from 1515.
s=961+(-28)2+(45-43)2+(65-43)2+(78-43)25-1s=961+(−28)2+(45−43)2+(65−43)2+(78−43)25−1
Step 6.1.4
Raise -28−28 to the power of 22.
s=961+784+(45-43)2+(65-43)2+(78-43)25-1s=961+784+(45−43)2+(65−43)2+(78−43)25−1
Step 6.1.5
Subtract 4343 from 4545.
s=961+784+22+(65-43)2+(78-43)25-1s=961+784+22+(65−43)2+(78−43)25−1
Step 6.1.6
Raise 22 to the power of 22.
s=961+784+4+(65-43)2+(78-43)25-1s=961+784+4+(65−43)2+(78−43)25−1
Step 6.1.7
Subtract 4343 from 6565.
s=961+784+4+222+(78-43)25-1s=961+784+4+222+(78−43)25−1
Step 6.1.8
Raise 2222 to the power of 22.
s=961+784+4+484+(78-43)25-1s=961+784+4+484+(78−43)25−1
Step 6.1.9
Subtract 4343 from 7878.
s=961+784+4+484+3525-1s=961+784+4+484+3525−1
Step 6.1.10
Raise 3535 to the power of 22.
s=961+784+4+484+12255-1s=961+784+4+484+12255−1
Step 6.1.11
Add 961961 and 784784.
s=1745+4+484+12255-1s=1745+4+484+12255−1
Step 6.1.12
Add 17451745 and 44.
s=1749+484+12255-1s=1749+484+12255−1
Step 6.1.13
Add 17491749 and 484484.
s=2233+12255-1s=2233+12255−1
Step 6.1.14
Add 22332233 and 12251225.
s=34585-1s=34585−1
s=34585-1s=34585−1
Step 6.2
Reduce the expression by cancelling the common factors.
Step 6.2.1
Subtract 11 from 55.
s=34584s=34584
Step 6.2.2
Cancel the common factor of 34583458 and 44.
Step 6.2.2.1
Factor 22 out of 34583458.
s=2(1729)4s=2(1729)4
Step 6.2.2.2
Cancel the common factors.
Step 6.2.2.2.1
Factor 22 out of 44.
s=2⋅17292⋅2s=2⋅17292⋅2
Step 6.2.2.2.2
Cancel the common factor.
s=2⋅17292⋅2
Step 6.2.2.2.3
Rewrite the expression.
s=17292
s=17292
s=17292
s=17292
s=17292
Step 7
Approximate the result.
s2≈864.5