Statistics Examples
2222 , 2525 , 6363 , 6565
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=22+25+63+654¯x=22+25+63+654
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 2222 and 2525.
‾x=47+63+654¯x=47+63+654
Step 1.2.2
Add 4747 and 6363.
‾x=110+654¯x=110+654
Step 1.2.3
Add 110110 and 6565.
‾x=1754¯x=1754
‾x=1754¯x=1754
Step 1.3
Divide.
‾x=43.75¯x=43.75
Step 1.4
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
‾x=43.8¯x=43.8
‾x=43.8¯x=43.8
Step 2
Step 2.1
Convert 2222 to a decimal value.
2222
Step 2.2
Convert 2525 to a decimal value.
2525
Step 2.3
Convert 6363 to a decimal value.
6363
Step 2.4
Convert 6565 to a decimal value.
6565
Step 2.5
The simplified values are 22,25,63,6522,25,63,65.
22,25,63,6522,25,63,65
22,25,63,6522,25,63,65
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1s=n∑i=1√(xi−xavg)2n−1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(22-43.8)2+(25-43.8)2+(63-43.8)2+(65-43.8)24-1
Step 5
Step 5.1
Subtract 43.8 from 22.
s=√(-21.8)2+(25-43.8)2+(63-43.8)2+(65-43.8)24-1
Step 5.2
Raise -21.8 to the power of 2.
s=√475.24+(25-43.8)2+(63-43.8)2+(65-43.8)24-1
Step 5.3
Subtract 43.8 from 25.
s=√475.24+(-18.8)2+(63-43.8)2+(65-43.8)24-1
Step 5.4
Raise -18.8 to the power of 2.
s=√475.24+353.44+(63-43.8)2+(65-43.8)24-1
Step 5.5
Subtract 43.8 from 63.
s=√475.24+353.44+19.22+(65-43.8)24-1
Step 5.6
Raise 19.2 to the power of 2.
s=√475.24+353.44+368.64+(65-43.8)24-1
Step 5.7
Subtract 43.8 from 65.
s=√475.24+353.44+368.64+21.224-1
Step 5.8
Raise 21.2 to the power of 2.
s=√475.24+353.44+368.64+449.444-1
Step 5.9
Add 475.24 and 353.44.
s=√828.68+368.64+449.444-1
Step 5.10
Add 828.68 and 368.64.
s=√1197.32+449.444-1
Step 5.11
Add 1197.32 and 449.44.
s=√1646.764-1
Step 5.12
Subtract 1 from 4.
s=√1646.763
Step 5.13
Divide 1646.76 by 3.
s=√548.92
s=√548.92
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
23.4