Statistics Examples
2323 , 2828 , 4545 , 5656 , 7878
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=23+28+45+56+785¯x=23+28+45+56+785
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 2323 and 2828.
‾x=51+45+56+785¯x=51+45+56+785
Step 1.2.2
Add 5151 and 4545.
‾x=96+56+785¯x=96+56+785
Step 1.2.3
Add 9696 and 5656.
‾x=152+785¯x=152+785
Step 1.2.4
Add 152152 and 7878.
‾x=2305¯x=2305
‾x=2305¯x=2305
Step 1.3
Divide 230230 by 55.
‾x=46¯x=46
‾x=46¯x=46
Step 2
Step 2.1
Convert 2323 to a decimal value.
2323
Step 2.2
Convert 2828 to a decimal value.
2828
Step 2.3
Convert 4545 to a decimal value.
4545
Step 2.4
Convert 5656 to a decimal value.
5656
Step 2.5
Convert 7878 to a decimal value.
7878
Step 2.6
The simplified values are 23,28,45,56,7823,28,45,56,78.
23,28,45,56,7823,28,45,56,78
23,28,45,56,7823,28,45,56,78
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1s=n∑i=1√(xi−xavg)2n−1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(23-46)2+(28-46)2+(45-46)2+(56-46)2+(78-46)25-1s=√(23−46)2+(28−46)2+(45−46)2+(56−46)2+(78−46)25−1
Step 5
Step 5.1
Simplify the expression.
Step 5.1.1
Subtract 4646 from 2323.
s=√(-23)2+(28-46)2+(45-46)2+(56-46)2+(78-46)25-1s=√(−23)2+(28−46)2+(45−46)2+(56−46)2+(78−46)25−1
Step 5.1.2
Raise -23−23 to the power of 22.
s=√529+(28-46)2+(45-46)2+(56-46)2+(78-46)25-1
Step 5.1.3
Subtract 46 from 28.
s=√529+(-18)2+(45-46)2+(56-46)2+(78-46)25-1
Step 5.1.4
Raise -18 to the power of 2.
s=√529+324+(45-46)2+(56-46)2+(78-46)25-1
Step 5.1.5
Subtract 46 from 45.
s=√529+324+(-1)2+(56-46)2+(78-46)25-1
Step 5.1.6
Raise -1 to the power of 2.
s=√529+324+1+(56-46)2+(78-46)25-1
Step 5.1.7
Subtract 46 from 56.
s=√529+324+1+102+(78-46)25-1
Step 5.1.8
Raise 10 to the power of 2.
s=√529+324+1+100+(78-46)25-1
Step 5.1.9
Subtract 46 from 78.
s=√529+324+1+100+3225-1
Step 5.1.10
Raise 32 to the power of 2.
s=√529+324+1+100+10245-1
Step 5.1.11
Add 529 and 324.
s=√853+1+100+10245-1
Step 5.1.12
Add 853 and 1.
s=√854+100+10245-1
Step 5.1.13
Add 854 and 100.
s=√954+10245-1
Step 5.1.14
Add 954 and 1024.
s=√19785-1
Step 5.1.15
Subtract 1 from 5.
s=√19784
s=√19784
Step 5.2
Cancel the common factor of 1978 and 4.
Step 5.2.1
Factor 2 out of 1978.
s=√2(989)4
Step 5.2.2
Cancel the common factors.
Step 5.2.2.1
Factor 2 out of 4.
s=√2⋅9892⋅2
Step 5.2.2.2
Cancel the common factor.
s=√2⋅9892⋅2
Step 5.2.2.3
Rewrite the expression.
s=√9892
s=√9892
s=√9892
Step 5.3
Rewrite √9892 as √989√2.
s=√989√2
Step 5.4
Multiply √989√2 by √2√2.
s=√989√2⋅√2√2
Step 5.5
Combine and simplify the denominator.
Step 5.5.1
Multiply √989√2 by √2√2.
s=√989√2√2√2
Step 5.5.2
Raise √2 to the power of 1.
s=√989√2√2√2
Step 5.5.3
Raise √2 to the power of 1.
s=√989√2√2√2
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=√989√2√21+1
Step 5.5.5
Add 1 and 1.
s=√989√2√22
Step 5.5.6
Rewrite √22 as 2.
Step 5.5.6.1
Use n√ax=axn to rewrite √2 as 212.
s=√989√2(212)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=√989√2212⋅2
Step 5.5.6.3
Combine 12 and 2.
s=√989√2222
Step 5.5.6.4
Cancel the common factor of 2.
Step 5.5.6.4.1
Cancel the common factor.
s=√989√2222
Step 5.5.6.4.2
Rewrite the expression.
s=√989√22
s=√989√22
Step 5.5.6.5
Evaluate the exponent.
s=√989√22
s=√989√22
s=√989√22
Step 5.6
Simplify the numerator.
Step 5.6.1
Combine using the product rule for radicals.
s=√989⋅22
Step 5.6.2
Multiply 989 by 2.
s=√19782
s=√19782
s=√19782
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
22.2