Statistics Examples
22 , 88 , 88 , 1212
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
μ=2+8+8+124μ=2+8+8+124
Step 2
Step 2.1
Factor 22 out of 22.
μ=2(1)+8+8+124μ=2(1)+8+8+124
Step 2.2
Factor 22 out of 88.
μ=2⋅1+2⋅4+8+124μ=2⋅1+2⋅4+8+124
Step 2.3
Factor 22 out of 2⋅1+2⋅42⋅1+2⋅4.
μ=2⋅(1+4)+8+124μ=2⋅(1+4)+8+124
Step 2.4
Factor 22 out of 88.
μ=2⋅(1+4)+2(4)+124μ=2⋅(1+4)+2(4)+124
Step 2.5
Factor 22 out of 2⋅(1+4)+2(4)2⋅(1+4)+2(4).
μ=2⋅(1+4+4)+124μ=2⋅(1+4+4)+124
Step 2.6
Factor 22 out of 1212.
μ=2⋅(1+4+4)+2(6)4μ=2⋅(1+4+4)+2(6)4
Step 2.7
Factor 22 out of 2⋅(1+4+4)+2(6)2⋅(1+4+4)+2(6).
μ=2⋅(1+4+4+6)4μ=2⋅(1+4+4+6)4
Step 2.8
Cancel the common factors.
Step 2.8.1
Factor 22 out of 44.
μ=2⋅(1+4+4+6)2(2)μ=2⋅(1+4+4+6)2(2)
Step 2.8.2
Cancel the common factor.
μ=2⋅(1+4+4+6)2⋅2
Step 2.8.3
Rewrite the expression.
μ=1+4+4+62
μ=1+4+4+62
μ=1+4+4+62
Step 3
Step 3.1
Add 1 and 4.
μ=5+4+62
Step 3.2
Add 5 and 4.
μ=9+62
Step 3.3
Add 9 and 6.
μ=152
μ=152
Step 4
Divide.
μ=7.5
Step 5
Arrange the terms in ascending order.
Median=2,8,8,12
Step 6
The median is the middle term in the arranged data set. In the case of an even number of terms, the median is the average of the two middle terms.
Median=8+82
Step 7
Remove parentheses.
Median=8+82
Step 8
Step 8.1
Factor 2 out of 8.
Median=2⋅4+82
Step 8.2
Factor 2 out of 8.
Median=2⋅4+2⋅42
Step 8.3
Factor 2 out of 2⋅4+2⋅4.
Median=2⋅(4+4)2
Step 8.4
Cancel the common factors.
Step 8.4.1
Factor 2 out of 2.
Median=2⋅(4+4)2(1)
Step 8.4.2
Cancel the common factor.
Median=2⋅(4+4)2⋅1
Step 8.4.3
Rewrite the expression.
Median=4+41
Step 8.4.4
Divide 4+4 by 1.
Median=4+4
Median=4+4
Median=4+4
Step 9
Add 4 and 4.
Median=8
Step 10
Convert the median 8 to decimal.
Median=8
Step 11
Since the mean is less than the median, the data set is negatively skewed.
Negatively Skewed