Examples
f(x)=7-3x+2x2f(x)=7−3x+2x2
Step 1
Write f(x)=7-3x+2x2f(x)=7−3x+2x2 as an equation.
y=7-3x+2x2y=7−3x+2x2
Step 2
Since xx is on the right side of the equation, switch the sides so it is on the left side of the equation.
7-3x+2x2=y7−3x+2x2=y
Step 3
Subtract 77 from both sides of the equation.
-3x+2x2=y-7−3x+2x2=y−7
Step 4
Step 4.1
Reorder -3x−3x and 2x22x2.
2x2-3x=y-72x2−3x=y−7
Step 4.2
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=2a=2
b=-3b=−3
c=0=y-7c=0=y−7
Step 4.3
Consider the vertex form of a parabola.
a(x+d)2+e=y-7a(x+d)2+e=y−7
Step 4.4
Find the value of dd using the formula d=b2ad=b2a.
Step 4.4.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-32⋅2d=−32⋅2
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Multiply 22 by 22.
d=-34d=−34
Step 4.4.2.2
Move the negative in front of the fraction.
d=-34d=−34
d=-34d=−34
d=-34d=−34
Step 4.5
Find the value of ee using the formula e=c-b24ae=c−b24a.
Step 4.5.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=c−b24a.
e=0-(-3)24⋅2e=0−(−3)24⋅2
Step 4.5.2
Simplify the right side.
Step 4.5.2.1
Simplify each term.
Step 4.5.2.1.1
Raise -3−3 to the power of 22.
e=0-94⋅2e=0−94⋅2
Step 4.5.2.1.2
Multiply 44 by 22.
e=0-98e=0−98
e=0-98e=0−98
Step 4.5.2.2
Subtract 9898 from 00.
e=-98e=−98
e=-98e=−98
e=-98e=−98
Step 4.6
Substitute the values of aa, dd, and ee into the vertex form 2(x-34)2-982(x−34)2−98.
2(x-34)2-98=y-72(x−34)2−98=y−7
2(x-34)2-98=y-72(x−34)2−98=y−7
Step 5
Step 5.1
Add 9898 to both sides of the equation.
2(x-34)2=y-7+982(x−34)2=y−7+98
Step 5.2
To write -7−7 as a fraction with a common denominator, multiply by 8888.
2(x-34)2=y-7⋅88+982(x−34)2=y−7⋅88+98
Step 5.3
Combine -7−7 and 8888.
2(x-34)2=y+-7⋅88+982(x−34)2=y+−7⋅88+98
Step 5.4
Combine the numerators over the common denominator.
2(x-34)2=y+-7⋅8+982(x−34)2=y+−7⋅8+98
Step 5.5
Simplify the numerator.
Step 5.5.1
Multiply -7−7 by 88.
2(x-34)2=y+-56+982(x−34)2=y+−56+98
Step 5.5.2
Add -56−56 and 99.
2(x-34)2=y+-4782(x−34)2=y+−478
2(x-34)2=y+-4782(x−34)2=y+−478
Step 5.6
Move the negative in front of the fraction.
2(x-34)2=y-4782(x−34)2=y−478
2(x-34)2=y-4782(x−34)2=y−478
Step 6
Step 6.1
Divide each term in 2(x-34)2=y-4782(x−34)2=y−478 by 22.
2(x-34)22=y2+-47822(x−34)22=y2+−4782
Step 6.2
Simplify the left side.
Step 6.2.1
Cancel the common factor of 22.
Step 6.2.1.1
Cancel the common factor.
2(x-34)22=y2+-4782
Step 6.2.1.2
Divide (x-34)2 by 1.
(x-34)2=y2+-4782
(x-34)2=y2+-4782
(x-34)2=y2+-4782
Step 6.3
Simplify the right side.
Step 6.3.1
Simplify each term.
Step 6.3.1.1
Multiply the numerator by the reciprocal of the denominator.
(x-34)2=y2-478⋅12
Step 6.3.1.2
Multiply -478⋅12.
Step 6.3.1.2.1
Multiply 12 by 478.
(x-34)2=y2-472⋅8
Step 6.3.1.2.2
Multiply 2 by 8.
(x-34)2=y2-4716
(x-34)2=y2-4716
(x-34)2=y2-4716
(x-34)2=y2-4716
(x-34)2=y2-4716
Step 7
Step 7.1
To write y2 as a fraction with a common denominator, multiply by 88.
(x-34)2=y2⋅88-4716
Step 7.2
Write each expression with a common denominator of 16, by multiplying each by an appropriate factor of 1.
Step 7.2.1
Multiply y2 by 88.
(x-34)2=y⋅82⋅8-4716
Step 7.2.2
Multiply 2 by 8.
(x-34)2=y⋅816-4716
(x-34)2=y⋅816-4716
Step 7.3
Combine the numerators over the common denominator.
(x-34)2=y⋅8-4716
Step 7.4
Move 8 to the left of y.
(x-34)2=8y-4716
Step 7.5
Reorder terms.
(x-34)2=116(8y-47)
(x-34)2=116(8y-47)