Examples
f(x)=6x-16 , f(x)=-x2
Step 1
Substitute -x2 for f(x).
-x2=6x-16
Step 2
Step 2.1
Subtract 6x from both sides of the equation.
-x2-6x=-16
Step 2.2
Add 16 to both sides of the equation.
-x2-6x+16=0
Step 2.3
Factor the left side of the equation.
Step 2.3.1
Factor -1 out of -x2-6x+16.
Step 2.3.1.1
Factor -1 out of -x2.
-(x2)-6x+16=0
Step 2.3.1.2
Factor -1 out of -6x.
-(x2)-(6x)+16=0
Step 2.3.1.3
Rewrite 16 as -1(-16).
-(x2)-(6x)-1⋅-16=0
Step 2.3.1.4
Factor -1 out of -(x2)-(6x).
-(x2+6x)-1⋅-16=0
Step 2.3.1.5
Factor -1 out of -(x2+6x)-1(-16).
-(x2+6x-16)=0
-(x2+6x-16)=0
Step 2.3.2
Factor.
Step 2.3.2.1
Factor x2+6x-16 using the AC method.
Step 2.3.2.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -16 and whose sum is 6.
-2,8
Step 2.3.2.1.2
Write the factored form using these integers.
-((x-2)(x+8))=0
-((x-2)(x+8))=0
Step 2.3.2.2
Remove unnecessary parentheses.
-(x-2)(x+8)=0
-(x-2)(x+8)=0
-(x-2)(x+8)=0
Step 2.4
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-2=0
x+8=0
Step 2.5
Set x-2 equal to 0 and solve for x.
Step 2.5.1
Set x-2 equal to 0.
x-2=0
Step 2.5.2
Add 2 to both sides of the equation.
x=2
x=2
Step 2.6
Set x+8 equal to 0 and solve for x.
Step 2.6.1
Set x+8 equal to 0.
x+8=0
Step 2.6.2
Subtract 8 from both sides of the equation.
x=-8
x=-8
Step 2.7
The final solution is all the values that make -(x-2)(x+8)=0 true.
x=2,-8
x=2,-8