Examples

Find the Maximum/Minimum Value
f(x)=5x2-5x+1f(x)=5x25x+1
Step 1
The minimum of a quadratic function occurs at x=-b2ax=b2a. If aa is positive, the minimum value of the function is f(-b2a)f(b2a).
fminfminx=ax2+bx+cx=ax2+bx+c occurs at x=-b2ax=b2a
Step 2
Find the value of x=-b2ax=b2a.
Tap for more steps...
Step 2.1
Substitute in the values of aa and bb.
x=--52(5)x=52(5)
Step 2.2
Remove parentheses.
x=--52(5)x=52(5)
Step 2.3
Simplify --52(5)52(5).
Tap for more steps...
Step 2.3.1
Cancel the common factor of -55 and 55.
Tap for more steps...
Step 2.3.1.1
Factor 55 out of -55.
x=-5-125x=5125
Step 2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.1.2.1
Factor 55 out of 2525.
x=-5-152x=5152
Step 2.3.1.2.2
Cancel the common factor.
x=-5-152
Step 2.3.1.2.3
Rewrite the expression.
x=--12
x=--12
x=--12
Step 2.3.2
Move the negative in front of the fraction.
x=--12
Step 2.3.3
Multiply --12.
Tap for more steps...
Step 2.3.3.1
Multiply -1 by -1.
x=1(12)
Step 2.3.3.2
Multiply 12 by 1.
x=12
x=12
x=12
x=12
Step 3
Evaluate f(12).
Tap for more steps...
Step 3.1
Replace the variable x with 12 in the expression.
f(12)=5(12)2-5(12)+1
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Apply the product rule to 12.
f(12)=5(1222)-5(12)+1
Step 3.2.1.2
One to any power is one.
f(12)=5(122)-5(12)+1
Step 3.2.1.3
Raise 2 to the power of 2.
f(12)=5(14)-5(12)+1
Step 3.2.1.4
Combine 5 and 14.
f(12)=54-5(12)+1
Step 3.2.1.5
Combine -5 and 12.
f(12)=54+-52+1
Step 3.2.1.6
Move the negative in front of the fraction.
f(12)=54-52+1
f(12)=54-52+1
Step 3.2.2
Find the common denominator.
Tap for more steps...
Step 3.2.2.1
Multiply 52 by 22.
f(12)=54-(5222)+1
Step 3.2.2.2
Multiply 52 by 22.
f(12)=54-5222+1
Step 3.2.2.3
Write 1 as a fraction with denominator 1.
f(12)=54-5222+11
Step 3.2.2.4
Multiply 11 by 44.
f(12)=54-5222+1144
Step 3.2.2.5
Multiply 11 by 44.
f(12)=54-5222+44
Step 3.2.2.6
Multiply 2 by 2.
f(12)=54-524+44
f(12)=54-524+44
Step 3.2.3
Combine the numerators over the common denominator.
f(12)=5-52+44
Step 3.2.4
Simplify the expression.
Tap for more steps...
Step 3.2.4.1
Multiply -5 by 2.
f(12)=5-10+44
Step 3.2.4.2
Subtract 10 from 5.
f(12)=-5+44
Step 3.2.4.3
Add -5 and 4.
f(12)=-14
Step 3.2.4.4
Move the negative in front of the fraction.
f(12)=-14
f(12)=-14
Step 3.2.5
The final answer is -14.
-14
-14
-14
Step 4
Use the x and y values to find where the minimum occurs.
(12,-14)
Step 5
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay