Examples
f(x)=3x-4+2x2f(x)=3x−4+2x2
Step 1
Step 1.1
Find f(-x)f(−x) by substituting -x−x for all occurrence of xx in f(x)f(x).
f(-x)=3(-x)-4+2(-x)2f(−x)=3(−x)−4+2(−x)2
Step 1.2
Simplify each term.
Step 1.2.1
Multiply -1−1 by 33.
f(-x)=-3x-4+2(-x)2f(−x)=−3x−4+2(−x)2
Step 1.2.2
Apply the product rule to -x−x.
f(-x)=-3x-4+2((-1)2x2)f(−x)=−3x−4+2((−1)2x2)
Step 1.2.3
Raise -1−1 to the power of 22.
f(-x)=-3x-4+2(1x2)f(−x)=−3x−4+2(1x2)
Step 1.2.4
Multiply x2x2 by 11.
f(-x)=-3x-4+2x2f(−x)=−3x−4+2x2
f(-x)=-3x-4+2x2f(−x)=−3x−4+2x2
f(-x)=-3x-4+2x2f(−x)=−3x−4+2x2
Step 2
Step 2.1
Check if f(-x)=f(x)f(−x)=f(x).
Step 2.2
Since -3x-4+2x2−3x−4+2x2≠≠3x-4+2x23x−4+2x2, the function is not even.
The function is not even
The function is not even
Step 3
Step 3.1
Find -f(x).
Step 3.1.1
Multiply 3x-4+2x2 by -1.
-f(x)=-(3x-4+2x2)
Step 3.1.2
Apply the distributive property.
-f(x)=-(3x)+4-(2x2)
Step 3.1.3
Simplify.
Step 3.1.3.1
Multiply 3 by -1.
-f(x)=-3x+4-(2x2)
Step 3.1.3.2
Multiply -1 by -4.
-f(x)=-3x+4-(2x2)
Step 3.1.3.3
Multiply 2 by -1.
-f(x)=-3x+4-2x2
-f(x)=-3x+4-2x2
-f(x)=-3x+4-2x2
Step 3.2
Since -3x-4+2x2≠-3x+4-2x2, the function is not odd.
The function is not odd
The function is not odd
Step 4
The function is neither odd nor even
Step 5