Precalculus Examples

Find the Angle Between the Vectors
(1,2) , (2,9)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗b⃗|a⃗||b⃗|)
Step 2
Find the dot product.
Tap for more steps...
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗b⃗=12+29
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply 2 by 1.
a⃗b⃗=2+29
Step 2.2.1.2
Multiply 2 by 9.
a⃗b⃗=2+18
a⃗b⃗=2+18
Step 2.2.2
Add 2 and 18.
a⃗b⃗=20
a⃗b⃗=20
a⃗b⃗=20
Step 3
Find the magnitude of a⃗.
Tap for more steps...
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=12+22
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
One to any power is one.
|a⃗|=1+22
Step 3.2.2
Raise 2 to the power of 2.
|a⃗|=1+4
Step 3.2.3
Add 1 and 4.
|a⃗|=5
|a⃗|=5
|a⃗|=5
Step 4
Find the magnitude of b⃗.
Tap for more steps...
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=22+92
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Raise 2 to the power of 2.
|b⃗|=4+92
Step 4.2.2
Raise 9 to the power of 2.
|b⃗|=4+81
Step 4.2.3
Add 4 and 81.
|b⃗|=85
|b⃗|=85
|b⃗|=85
Step 5
Substitute the values into the formula.
θ=arccos(20585)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify the denominator.
Tap for more steps...
Step 6.1.1
Combine using the product rule for radicals.
θ=arccos(20585)
Step 6.1.2
Multiply 5 by 85.
θ=arccos(20425)
θ=arccos(20425)
Step 6.2
Simplify the denominator.
Tap for more steps...
Step 6.2.1
Rewrite 425 as 5217.
Tap for more steps...
Step 6.2.1.1
Factor 25 out of 425.
θ=arccos(2025(17))
Step 6.2.1.2
Rewrite 25 as 52.
θ=arccos(205217)
θ=arccos(205217)
Step 6.2.2
Pull terms out from under the radical.
θ=arccos(20517)
θ=arccos(20517)
Step 6.3
Cancel the common factor of 20 and 5.
Tap for more steps...
Step 6.3.1
Factor 5 out of 20.
θ=arccos(54517)
Step 6.3.2
Cancel the common factors.
Tap for more steps...
Step 6.3.2.1
Factor 5 out of 517.
θ=arccos(545(17))
Step 6.3.2.2
Cancel the common factor.
θ=arccos(54517)
Step 6.3.2.3
Rewrite the expression.
θ=arccos(417)
θ=arccos(417)
θ=arccos(417)
Step 6.4
Multiply 417 by 1717.
θ=arccos(4171717)
Step 6.5
Combine and simplify the denominator.
Tap for more steps...
Step 6.5.1
Multiply 417 by 1717.
θ=arccos(4171717)
Step 6.5.2
Raise 17 to the power of 1.
θ=arccos(41717117)
Step 6.5.3
Raise 17 to the power of 1.
θ=arccos(417171171)
Step 6.5.4
Use the power rule aman=am+n to combine exponents.
θ=arccos(417171+1)
Step 6.5.5
Add 1 and 1.
θ=arccos(417172)
Step 6.5.6
Rewrite 172 as 17.
Tap for more steps...
Step 6.5.6.1
Use nax=axn to rewrite 17 as 1712.
θ=arccos(417(1712)2)
Step 6.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(41717122)
Step 6.5.6.3
Combine 12 and 2.
θ=arccos(4171722)
Step 6.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.5.6.4.1
Cancel the common factor.
θ=arccos(4171722)
Step 6.5.6.4.2
Rewrite the expression.
θ=arccos(417171)
θ=arccos(417171)
Step 6.5.6.5
Evaluate the exponent.
θ=arccos(41717)
θ=arccos(41717)
θ=arccos(41717)
Step 6.6
Evaluate arccos(41717).
θ=14.03624346
θ=14.03624346
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay