Precalculus Examples
(1,2) , (2,9)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)
Step 2
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗⋅b⃗=1⋅2+2⋅9
Step 2.2
Simplify.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 2 by 1.
a⃗⋅b⃗=2+2⋅9
Step 2.2.1.2
Multiply 2 by 9.
a⃗⋅b⃗=2+18
a⃗⋅b⃗=2+18
Step 2.2.2
Add 2 and 18.
a⃗⋅b⃗=20
a⃗⋅b⃗=20
a⃗⋅b⃗=20
Step 3
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=√12+22
Step 3.2
Simplify.
Step 3.2.1
One to any power is one.
|a⃗|=√1+22
Step 3.2.2
Raise 2 to the power of 2.
|a⃗|=√1+4
Step 3.2.3
Add 1 and 4.
|a⃗|=√5
|a⃗|=√5
|a⃗|=√5
Step 4
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=√22+92
Step 4.2
Simplify.
Step 4.2.1
Raise 2 to the power of 2.
|b⃗|=√4+92
Step 4.2.2
Raise 9 to the power of 2.
|b⃗|=√4+81
Step 4.2.3
Add 4 and 81.
|b⃗|=√85
|b⃗|=√85
|b⃗|=√85
Step 5
Substitute the values into the formula.
θ=arccos(20√5√85)
Step 6
Step 6.1
Simplify the denominator.
Step 6.1.1
Combine using the product rule for radicals.
θ=arccos(20√5⋅85)
Step 6.1.2
Multiply 5 by 85.
θ=arccos(20√425)
θ=arccos(20√425)
Step 6.2
Simplify the denominator.
Step 6.2.1
Rewrite 425 as 52⋅17.
Step 6.2.1.1
Factor 25 out of 425.
θ=arccos(20√25(17))
Step 6.2.1.2
Rewrite 25 as 52.
θ=arccos(20√52⋅17)
θ=arccos(20√52⋅17)
Step 6.2.2
Pull terms out from under the radical.
θ=arccos(205√17)
θ=arccos(205√17)
Step 6.3
Cancel the common factor of 20 and 5.
Step 6.3.1
Factor 5 out of 20.
θ=arccos(5⋅45√17)
Step 6.3.2
Cancel the common factors.
Step 6.3.2.1
Factor 5 out of 5√17.
θ=arccos(5⋅45(√17))
Step 6.3.2.2
Cancel the common factor.
θ=arccos(5⋅45√17)
Step 6.3.2.3
Rewrite the expression.
θ=arccos(4√17)
θ=arccos(4√17)
θ=arccos(4√17)
Step 6.4
Multiply 4√17 by √17√17.
θ=arccos(4√17⋅√17√17)
Step 6.5
Combine and simplify the denominator.
Step 6.5.1
Multiply 4√17 by √17√17.
θ=arccos(4√17√17√17)
Step 6.5.2
Raise √17 to the power of 1.
θ=arccos(4√17√171√17)
Step 6.5.3
Raise √17 to the power of 1.
θ=arccos(4√17√171√171)
Step 6.5.4
Use the power rule aman=am+n to combine exponents.
θ=arccos(4√17√171+1)
Step 6.5.5
Add 1 and 1.
θ=arccos(4√17√172)
Step 6.5.6
Rewrite √172 as 17.
Step 6.5.6.1
Use n√ax=axn to rewrite √17 as 1712.
θ=arccos(4√17(1712)2)
Step 6.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(4√171712⋅2)
Step 6.5.6.3
Combine 12 and 2.
θ=arccos(4√171722)
Step 6.5.6.4
Cancel the common factor of 2.
Step 6.5.6.4.1
Cancel the common factor.
θ=arccos(4√171722)
Step 6.5.6.4.2
Rewrite the expression.
θ=arccos(4√17171)
θ=arccos(4√17171)
Step 6.5.6.5
Evaluate the exponent.
θ=arccos(4√1717)
θ=arccos(4√1717)
θ=arccos(4√1717)
Step 6.6
Evaluate arccos(4√1717).
θ=14.03624346
θ=14.03624346