Precalculus Examples

Find the Angle Between the Vectors
(6,8) , (2,4)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗b⃗|a⃗||b⃗|)
Step 2
Find the dot product.
Tap for more steps...
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗b⃗=62+84
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply 6 by 2.
a⃗b⃗=12+84
Step 2.2.1.2
Multiply 8 by 4.
a⃗b⃗=12+32
a⃗b⃗=12+32
Step 2.2.2
Add 12 and 32.
a⃗b⃗=44
a⃗b⃗=44
a⃗b⃗=44
Step 3
Find the magnitude of a⃗.
Tap for more steps...
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=62+82
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Raise 6 to the power of 2.
|a⃗|=36+82
Step 3.2.2
Raise 8 to the power of 2.
|a⃗|=36+64
Step 3.2.3
Add 36 and 64.
|a⃗|=100
Step 3.2.4
Rewrite 100 as 102.
|a⃗|=102
Step 3.2.5
Pull terms out from under the radical, assuming positive real numbers.
|a⃗|=10
|a⃗|=10
|a⃗|=10
Step 4
Find the magnitude of b⃗.
Tap for more steps...
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=22+42
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Raise 2 to the power of 2.
|b⃗|=4+42
Step 4.2.2
Raise 4 to the power of 2.
|b⃗|=4+16
Step 4.2.3
Add 4 and 16.
|b⃗|=20
Step 4.2.4
Rewrite 20 as 225.
Tap for more steps...
Step 4.2.4.1
Factor 4 out of 20.
|b⃗|=4(5)
Step 4.2.4.2
Rewrite 4 as 22.
|b⃗|=225
|b⃗|=225
Step 4.2.5
Pull terms out from under the radical.
|b⃗|=25
|b⃗|=25
|b⃗|=25
Step 5
Substitute the values into the formula.
θ=arccos(4410(25))
Step 6
Simplify.
Tap for more steps...
Step 6.1
Cancel the common factor of 44 and 10.
Tap for more steps...
Step 6.1.1
Factor 2 out of 44.
θ=arccos(2(22)10(25))
Step 6.1.2
Cancel the common factors.
Tap for more steps...
Step 6.1.2.1
Factor 2 out of 10(25).
θ=arccos(2(22)2(5(25)))
Step 6.1.2.2
Cancel the common factor.
θ=arccos(2222(5(25)))
Step 6.1.2.3
Rewrite the expression.
θ=arccos(225(25))
θ=arccos(225(25))
θ=arccos(225(25))
Step 6.2
Cancel the common factor of 22 and 2.
Tap for more steps...
Step 6.2.1
Factor 2 out of 22.
θ=arccos(2115(25))
Step 6.2.2
Cancel the common factors.
Tap for more steps...
Step 6.2.2.1
Factor 2 out of 5(25).
θ=arccos(2112(5(5)))
Step 6.2.2.2
Cancel the common factor.
θ=arccos(2112(5(5)))
Step 6.2.2.3
Rewrite the expression.
θ=arccos(115(5))
θ=arccos(115(5))
θ=arccos(115(5))
Step 6.3
Multiply 1155 by 55.
θ=arccos(115555)
Step 6.4
Combine and simplify the denominator.
Tap for more steps...
Step 6.4.1
Multiply 1155 by 55.
θ=arccos(115555)
Step 6.4.2
Move 5.
θ=arccos(1155(55))
Step 6.4.3
Raise 5 to the power of 1.
θ=arccos(1155(515))
Step 6.4.4
Raise 5 to the power of 1.
θ=arccos(1155(5151))
Step 6.4.5
Use the power rule aman=am+n to combine exponents.
θ=arccos(115551+1)
Step 6.4.6
Add 1 and 1.
θ=arccos(115552)
Step 6.4.7
Rewrite 52 as 5.
Tap for more steps...
Step 6.4.7.1
Use nax=axn to rewrite 5 as 512.
θ=arccos(1155(512)2)
Step 6.4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(11555122)
Step 6.4.7.3
Combine 12 and 2.
θ=arccos(1155522)
Step 6.4.7.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.4.7.4.1
Cancel the common factor.
θ=arccos(1155522)
Step 6.4.7.4.2
Rewrite the expression.
θ=arccos(115551)
θ=arccos(115551)
Step 6.4.7.5
Evaluate the exponent.
θ=arccos(11555)
θ=arccos(11555)
θ=arccos(11555)
Step 6.5
Multiply 5 by 5.
θ=arccos(11525)
Step 6.6
Evaluate arccos(11525).
θ=10.30484646
θ=10.30484646
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay