Precalculus Examples
(6,8) , (2,4)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)
Step 2
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗⋅b⃗=6⋅2+8⋅4
Step 2.2
Simplify.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 6 by 2.
a⃗⋅b⃗=12+8⋅4
Step 2.2.1.2
Multiply 8 by 4.
a⃗⋅b⃗=12+32
a⃗⋅b⃗=12+32
Step 2.2.2
Add 12 and 32.
a⃗⋅b⃗=44
a⃗⋅b⃗=44
a⃗⋅b⃗=44
Step 3
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=√62+82
Step 3.2
Simplify.
Step 3.2.1
Raise 6 to the power of 2.
|a⃗|=√36+82
Step 3.2.2
Raise 8 to the power of 2.
|a⃗|=√36+64
Step 3.2.3
Add 36 and 64.
|a⃗|=√100
Step 3.2.4
Rewrite 100 as 102.
|a⃗|=√102
Step 3.2.5
Pull terms out from under the radical, assuming positive real numbers.
|a⃗|=10
|a⃗|=10
|a⃗|=10
Step 4
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=√22+42
Step 4.2
Simplify.
Step 4.2.1
Raise 2 to the power of 2.
|b⃗|=√4+42
Step 4.2.2
Raise 4 to the power of 2.
|b⃗|=√4+16
Step 4.2.3
Add 4 and 16.
|b⃗|=√20
Step 4.2.4
Rewrite 20 as 22⋅5.
Step 4.2.4.1
Factor 4 out of 20.
|b⃗|=√4(5)
Step 4.2.4.2
Rewrite 4 as 22.
|b⃗|=√22⋅5
|b⃗|=√22⋅5
Step 4.2.5
Pull terms out from under the radical.
|b⃗|=2√5
|b⃗|=2√5
|b⃗|=2√5
Step 5
Substitute the values into the formula.
θ=arccos(4410(2√5))
Step 6
Step 6.1
Cancel the common factor of 44 and 10.
Step 6.1.1
Factor 2 out of 44.
θ=arccos(2(22)10(2√5))
Step 6.1.2
Cancel the common factors.
Step 6.1.2.1
Factor 2 out of 10(2√5).
θ=arccos(2(22)2(5(2√5)))
Step 6.1.2.2
Cancel the common factor.
θ=arccos(2⋅222(5(2√5)))
Step 6.1.2.3
Rewrite the expression.
θ=arccos(225(2√5))
θ=arccos(225(2√5))
θ=arccos(225(2√5))
Step 6.2
Cancel the common factor of 22 and 2.
Step 6.2.1
Factor 2 out of 22.
θ=arccos(2⋅115(2√5))
Step 6.2.2
Cancel the common factors.
Step 6.2.2.1
Factor 2 out of 5(2√5).
θ=arccos(2⋅112(5(√5)))
Step 6.2.2.2
Cancel the common factor.
θ=arccos(2⋅112(5(√5)))
Step 6.2.2.3
Rewrite the expression.
θ=arccos(115(√5))
θ=arccos(115(√5))
θ=arccos(115(√5))
Step 6.3
Multiply 115√5 by √5√5.
θ=arccos(115√5⋅√5√5)
Step 6.4
Combine and simplify the denominator.
Step 6.4.1
Multiply 115√5 by √5√5.
θ=arccos(11√55√5√5)
Step 6.4.2
Move √5.
θ=arccos(11√55(√5√5))
Step 6.4.3
Raise √5 to the power of 1.
θ=arccos(11√55(√51√5))
Step 6.4.4
Raise √5 to the power of 1.
θ=arccos(11√55(√51√51))
Step 6.4.5
Use the power rule aman=am+n to combine exponents.
θ=arccos(11√55√51+1)
Step 6.4.6
Add 1 and 1.
θ=arccos(11√55√52)
Step 6.4.7
Rewrite √52 as 5.
Step 6.4.7.1
Use n√ax=axn to rewrite √5 as 512.
θ=arccos(11√55(512)2)
Step 6.4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(11√55⋅512⋅2)
Step 6.4.7.3
Combine 12 and 2.
θ=arccos(11√55⋅522)
Step 6.4.7.4
Cancel the common factor of 2.
Step 6.4.7.4.1
Cancel the common factor.
θ=arccos(11√55⋅522)
Step 6.4.7.4.2
Rewrite the expression.
θ=arccos(11√55⋅51)
θ=arccos(11√55⋅51)
Step 6.4.7.5
Evaluate the exponent.
θ=arccos(11√55⋅5)
θ=arccos(11√55⋅5)
θ=arccos(11√55⋅5)
Step 6.5
Multiply 5 by 5.
θ=arccos(11√525)
Step 6.6
Evaluate arccos(11√525).
θ=10.30484646
θ=10.30484646