Precalculus Examples
x+2y=4x+2y=4 , x-y=-3x−y=−3
Step 1
Subtract 2y2y from both sides of the equation.
x=4-2yx=4−2y
x-y=-3x−y=−3
Step 2
Step 2.1
Replace all occurrences of xx in x-y=-3x−y=−3 with 4-2y4−2y.
(4-2y)-y=-3(4−2y)−y=−3
x=4-2yx=4−2y
Step 2.2
Simplify the left side.
Step 2.2.1
Subtract yy from -2y−2y.
4-3y=-34−3y=−3
x=4-2yx=4−2y
4-3y=-34−3y=−3
x=4-2yx=4−2y
4-3y=-34−3y=−3
x=4-2yx=4−2y
Step 3
Step 3.1
Move all terms not containing yy to the right side of the equation.
Step 3.1.1
Subtract 44 from both sides of the equation.
-3y=-3-4−3y=−3−4
x=4-2yx=4−2y
Step 3.1.2
Subtract 44 from -3−3.
-3y=-7−3y=−7
x=4-2yx=4−2y
-3y=-7−3y=−7
x=4-2yx=4−2y
Step 3.2
Divide each term in -3y=-7−3y=−7 by -3−3 and simplify.
Step 3.2.1
Divide each term in -3y=-7−3y=−7 by -3−3.
-3y-3=-7-3−3y−3=−7−3
x=4-2yx=4−2y
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of -3−3.
Step 3.2.2.1.1
Cancel the common factor.
-3y-3=-7-3
x=4-2y
Step 3.2.2.1.2
Divide y by 1.
y=-7-3
x=4-2y
y=-7-3
x=4-2y
y=-7-3
x=4-2y
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Dividing two negative values results in a positive value.
y=73
x=4-2y
y=73
x=4-2y
y=73
x=4-2y
y=73
x=4-2y
Step 4
Step 4.1
Replace all occurrences of y in x=4-2y with 73.
x=4-2(73)
y=73
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify 4-2(73).
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Multiply -2(73).
Step 4.2.1.1.1.1
Combine -2 and 73.
x=4+-2⋅73
y=73
Step 4.2.1.1.1.2
Multiply -2 by 7.
x=4+-143
y=73
x=4+-143
y=73
Step 4.2.1.1.2
Move the negative in front of the fraction.
x=4-143
y=73
x=4-143
y=73
Step 4.2.1.2
To write 4 as a fraction with a common denominator, multiply by 33.
x=4⋅33-143
y=73
Step 4.2.1.3
Combine 4 and 33.
x=4⋅33-143
y=73
Step 4.2.1.4
Combine the numerators over the common denominator.
x=4⋅3-143
y=73
Step 4.2.1.5
Simplify the numerator.
Step 4.2.1.5.1
Multiply 4 by 3.
x=12-143
y=73
Step 4.2.1.5.2
Subtract 14 from 12.
x=-23
y=73
x=-23
y=73
Step 4.2.1.6
Move the negative in front of the fraction.
x=-23
y=73
x=-23
y=73
x=-23
y=73
x=-23
y=73
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(-23,73)
Step 6
The result can be shown in multiple forms.
Point Form:
(-23,73)
Equation Form:
x=-23,y=73
Step 7