Precalculus Examples

Solve in Terms of the Arbitrary Variable x
x-4y+5z=0x4y+5z=0 , x+z-3y=0x+z3y=0
Step 1
Solve the equation for yy.
Tap for more steps...
Step 1.1
Move all terms not containing yy to the right side of the equation.
Tap for more steps...
Step 1.1.1
Subtract xx from both sides of the equation.
-4y+5z=-x4y+5z=x
x+z-3y=0x+z3y=0
Step 1.1.2
Subtract 5z5z from both sides of the equation.
-4y=-x-5z4y=x5z
x+z-3y=0x+z3y=0
-4y=-x-5z4y=x5z
x+z-3y=0x+z3y=0
Step 1.2
Divide each term in -4y=-x-5z4y=x5z by -44 and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in -4y=-x-5z4y=x5z by -44.
-4y-4=-x-4+-5z-44y4=x4+5z4
x+z-3y=0x+z3y=0
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of -44.
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
-4y-4=-x-4+-5z-4
x+z-3y=0
Step 1.2.2.1.2
Divide y by 1.
y=-x-4+-5z-4
x+z-3y=0
y=-x-4+-5z-4
x+z-3y=0
y=-x-4+-5z-4
x+z-3y=0
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.2.3.1.1
Dividing two negative values results in a positive value.
y=x4+-5z-4
x+z-3y=0
Step 1.2.3.1.2
Dividing two negative values results in a positive value.
y=x4+5z4
x+z-3y=0
y=x4+5z4
x+z-3y=0
y=x4+5z4
x+z-3y=0
y=x4+5z4
x+z-3y=0
y=x4+5z4
x+z-3y=0
Step 2
Solve the equation for z.
Tap for more steps...
Step 2.1
Simplify x+z-3(x4+5z4).
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Apply the distributive property.
x+z-3x4-35z4=0
y=x4+5z4
Step 2.1.1.2
Combine -3 and x4.
x+z+-3x4-35z4=0
y=x4+5z4
Step 2.1.1.3
Multiply -35z4.
Tap for more steps...
Step 2.1.1.3.1
Combine -3 and 5z4.
x+z+-3x4+-3(5z)4=0
y=x4+5z4
Step 2.1.1.3.2
Multiply 5 by -3.
x+z+-3x4+-15z4=0
y=x4+5z4
x+z+-3x4+-15z4=0
y=x4+5z4
Step 2.1.1.4
Simplify each term.
Tap for more steps...
Step 2.1.1.4.1
Move the negative in front of the fraction.
x+z-(3)x4+-15z4=0
y=x4+5z4
Step 2.1.1.4.2
Move the negative in front of the fraction.
x+z-3x4-15z4=0
y=x4+5z4
x+z-3x4-15z4=0
y=x4+5z4
x+z-3x4-15z4=0
y=x4+5z4
Step 2.1.2
To write x as a fraction with a common denominator, multiply by 44.
z+x44-3x4-15z4=0
y=x4+5z4
Step 2.1.3
Simplify terms.
Tap for more steps...
Step 2.1.3.1
Combine x and 44.
z+x44-3x4-15z4=0
y=x4+5z4
Step 2.1.3.2
Combine the numerators over the common denominator.
z+x4-3x4-15z4=0
y=x4+5z4
Step 2.1.3.3
Combine the numerators over the common denominator.
z+x4-3x-15z4=0
y=x4+5z4
z+x4-3x-15z4=0
y=x4+5z4
Step 2.1.4
Move 4 to the left of x.
z+4x-3x-15z4=0
y=x4+5z4
Step 2.1.5
Subtract 3x from 4x.
z+x-15z4=0
y=x4+5z4
Step 2.1.6
To write z as a fraction with a common denominator, multiply by 44.
z44+x-15z4=0
y=x4+5z4
Step 2.1.7
Simplify terms.
Tap for more steps...
Step 2.1.7.1
Combine z and 44.
z44+x-15z4=0
y=x4+5z4
Step 2.1.7.2
Combine the numerators over the common denominator.
z4+x-15z4=0
y=x4+5z4
z4+x-15z4=0
y=x4+5z4
Step 2.1.8
Simplify the numerator.
Tap for more steps...
Step 2.1.8.1
Move 4 to the left of z.
4z+x-15z4=0
y=x4+5z4
Step 2.1.8.2
Subtract 15z from 4z.
x-11z4=0
y=x4+5z4
x-11z4=0
y=x4+5z4
x-11z4=0
y=x4+5z4
Step 2.2
Set the numerator equal to zero.
x-11z=0
y=x4+5z4
Step 2.3
Solve the equation for z.
Tap for more steps...
Step 2.3.1
Subtract x from both sides of the equation.
-11z=-x
y=x4+5z4
Step 2.3.2
Divide each term in -11z=-x by -11 and simplify.
Tap for more steps...
Step 2.3.2.1
Divide each term in -11z=-x by -11.
-11z-11=-x-11
y=x4+5z4
Step 2.3.2.2
Simplify the left side.
Tap for more steps...
Step 2.3.2.2.1
Cancel the common factor of -11.
Tap for more steps...
Step 2.3.2.2.1.1
Cancel the common factor.
-11z-11=-x-11
y=x4+5z4
Step 2.3.2.2.1.2
Divide z by 1.
z=-x-11
y=x4+5z4
z=-x-11
y=x4+5z4
z=-x-11
y=x4+5z4
Step 2.3.2.3
Simplify the right side.
Tap for more steps...
Step 2.3.2.3.1
Dividing two negative values results in a positive value.
z=x11
y=x4+5z4
z=x11
y=x4+5z4
z=x11
y=x4+5z4
z=x11
y=x4+5z4
z=x11
y=x4+5z4
Step 3
Simplify the right side.
Tap for more steps...
Step 3.1
Simplify x4+5(x11)4.
Tap for more steps...
Step 3.1.1
Combine the numerators over the common denominator.
y=x+5(x11)4
z=x11
Step 3.1.2
Combine 5 and x11.
y=x+5x114
z=x11
Step 3.1.3
To write x as a fraction with a common denominator, multiply by 1111.
y=x1111+5x114
z=x11
Step 3.1.4
Simplify terms.
Tap for more steps...
Step 3.1.4.1
Combine x and 1111.
y=x1111+5x114
z=x11
Step 3.1.4.2
Combine the numerators over the common denominator.
y=x11+5x114
z=x11
y=x11+5x114
z=x11
Step 3.1.5
Simplify the numerator.
Tap for more steps...
Step 3.1.5.1
Move 11 to the left of x.
y=11x+5x114
z=x11
Step 3.1.5.2
Add 11x and 5x.
y=16x114
z=x11
y=16x114
z=x11
Step 3.1.6
Multiply the numerator by the reciprocal of the denominator.
y=16x1114
z=x11
Step 3.1.7
Cancel the common factor of 4.
Tap for more steps...
Step 3.1.7.1
Factor 4 out of 16x.
y=4(4x)1114
z=x11
Step 3.1.7.2
Cancel the common factor.
y=4(4x)1114
z=x11
Step 3.1.7.3
Rewrite the expression.
y=4x11
z=x11
y=4x11
z=x11
y=4x11
z=x11
y=4x11
z=x11
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay