Precalculus Examples
x-4y+5z=0x−4y+5z=0 , x+z-3y=0x+z−3y=0
Step 1
Step 1.1
Move all terms not containing yy to the right side of the equation.
Step 1.1.1
Subtract xx from both sides of the equation.
-4y+5z=-x−4y+5z=−x
x+z-3y=0x+z−3y=0
Step 1.1.2
Subtract 5z5z from both sides of the equation.
-4y=-x-5z−4y=−x−5z
x+z-3y=0x+z−3y=0
-4y=-x-5z−4y=−x−5z
x+z-3y=0x+z−3y=0
Step 1.2
Divide each term in -4y=-x-5z−4y=−x−5z by -4−4 and simplify.
Step 1.2.1
Divide each term in -4y=-x-5z−4y=−x−5z by -4−4.
-4y-4=-x-4+-5z-4−4y−4=−x−4+−5z−4
x+z-3y=0x+z−3y=0
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of -4−4.
Step 1.2.2.1.1
Cancel the common factor.
-4y-4=-x-4+-5z-4
x+z-3y=0
Step 1.2.2.1.2
Divide y by 1.
y=-x-4+-5z-4
x+z-3y=0
y=-x-4+-5z-4
x+z-3y=0
y=-x-4+-5z-4
x+z-3y=0
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Dividing two negative values results in a positive value.
y=x4+-5z-4
x+z-3y=0
Step 1.2.3.1.2
Dividing two negative values results in a positive value.
y=x4+5z4
x+z-3y=0
y=x4+5z4
x+z-3y=0
y=x4+5z4
x+z-3y=0
y=x4+5z4
x+z-3y=0
y=x4+5z4
x+z-3y=0
Step 2
Step 2.1
Simplify x+z-3(x4+5z4).
Step 2.1.1
Simplify each term.
Step 2.1.1.1
Apply the distributive property.
x+z-3x4-35z4=0
y=x4+5z4
Step 2.1.1.2
Combine -3 and x4.
x+z+-3x4-35z4=0
y=x4+5z4
Step 2.1.1.3
Multiply -35z4.
Step 2.1.1.3.1
Combine -3 and 5z4.
x+z+-3x4+-3(5z)4=0
y=x4+5z4
Step 2.1.1.3.2
Multiply 5 by -3.
x+z+-3x4+-15z4=0
y=x4+5z4
x+z+-3x4+-15z4=0
y=x4+5z4
Step 2.1.1.4
Simplify each term.
Step 2.1.1.4.1
Move the negative in front of the fraction.
x+z-(3)x4+-15z4=0
y=x4+5z4
Step 2.1.1.4.2
Move the negative in front of the fraction.
x+z-3x4-15z4=0
y=x4+5z4
x+z-3x4-15z4=0
y=x4+5z4
x+z-3x4-15z4=0
y=x4+5z4
Step 2.1.2
To write x as a fraction with a common denominator, multiply by 44.
z+x⋅44-3x4-15z4=0
y=x4+5z4
Step 2.1.3
Simplify terms.
Step 2.1.3.1
Combine x and 44.
z+x⋅44-3x4-15z4=0
y=x4+5z4
Step 2.1.3.2
Combine the numerators over the common denominator.
z+x⋅4-3x4-15z4=0
y=x4+5z4
Step 2.1.3.3
Combine the numerators over the common denominator.
z+x⋅4-3x-15z4=0
y=x4+5z4
z+x⋅4-3x-15z4=0
y=x4+5z4
Step 2.1.4
Move 4 to the left of x.
z+4x-3x-15z4=0
y=x4+5z4
Step 2.1.5
Subtract 3x from 4x.
z+x-15z4=0
y=x4+5z4
Step 2.1.6
To write z as a fraction with a common denominator, multiply by 44.
z⋅44+x-15z4=0
y=x4+5z4
Step 2.1.7
Simplify terms.
Step 2.1.7.1
Combine z and 44.
z⋅44+x-15z4=0
y=x4+5z4
Step 2.1.7.2
Combine the numerators over the common denominator.
z⋅4+x-15z4=0
y=x4+5z4
z⋅4+x-15z4=0
y=x4+5z4
Step 2.1.8
Simplify the numerator.
Step 2.1.8.1
Move 4 to the left of z.
4⋅z+x-15z4=0
y=x4+5z4
Step 2.1.8.2
Subtract 15z from 4z.
x-11z4=0
y=x4+5z4
x-11z4=0
y=x4+5z4
x-11z4=0
y=x4+5z4
Step 2.2
Set the numerator equal to zero.
x-11z=0
y=x4+5z4
Step 2.3
Solve the equation for z.
Step 2.3.1
Subtract x from both sides of the equation.
-11z=-x
y=x4+5z4
Step 2.3.2
Divide each term in -11z=-x by -11 and simplify.
Step 2.3.2.1
Divide each term in -11z=-x by -11.
-11z-11=-x-11
y=x4+5z4
Step 2.3.2.2
Simplify the left side.
Step 2.3.2.2.1
Cancel the common factor of -11.
Step 2.3.2.2.1.1
Cancel the common factor.
-11z-11=-x-11
y=x4+5z4
Step 2.3.2.2.1.2
Divide z by 1.
z=-x-11
y=x4+5z4
z=-x-11
y=x4+5z4
z=-x-11
y=x4+5z4
Step 2.3.2.3
Simplify the right side.
Step 2.3.2.3.1
Dividing two negative values results in a positive value.
z=x11
y=x4+5z4
z=x11
y=x4+5z4
z=x11
y=x4+5z4
z=x11
y=x4+5z4
z=x11
y=x4+5z4
Step 3
Step 3.1
Simplify x4+5(x11)4.
Step 3.1.1
Combine the numerators over the common denominator.
y=x+5(x11)4
z=x11
Step 3.1.2
Combine 5 and x11.
y=x+5x114
z=x11
Step 3.1.3
To write x as a fraction with a common denominator, multiply by 1111.
y=x⋅1111+5x114
z=x11
Step 3.1.4
Simplify terms.
Step 3.1.4.1
Combine x and 1111.
y=x⋅1111+5x114
z=x11
Step 3.1.4.2
Combine the numerators over the common denominator.
y=x⋅11+5x114
z=x11
y=x⋅11+5x114
z=x11
Step 3.1.5
Simplify the numerator.
Step 3.1.5.1
Move 11 to the left of x.
y=11⋅x+5x114
z=x11
Step 3.1.5.2
Add 11x and 5x.
y=16x114
z=x11
y=16x114
z=x11
Step 3.1.6
Multiply the numerator by the reciprocal of the denominator.
y=16x11⋅14
z=x11
Step 3.1.7
Cancel the common factor of 4.
Step 3.1.7.1
Factor 4 out of 16x.
y=4(4x)11⋅14
z=x11
Step 3.1.7.2
Cancel the common factor.
y=4(4x)11⋅14
z=x11
Step 3.1.7.3
Rewrite the expression.
y=4x11
z=x11
y=4x11
z=x11
y=4x11
z=x11
y=4x11
z=x11