Precalculus Examples

Solve in Terms of the Arbitrary Variable x
6x-y+4z=06xy+4z=0 , x-7y+z=0
Step 1
Solve the equation for x.
Tap for more steps...
Step 1.1
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 1.1.1
Add y to both sides of the equation.
6x+4z=y
x-7y+z=0
Step 1.1.2
Subtract 4z from both sides of the equation.
6x=y-4z
x-7y+z=0
6x=y-4z
x-7y+z=0
Step 1.2
Divide each term in 6x=y-4z by 6 and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in 6x=y-4z by 6.
6x6=y6+-4z6
x-7y+z=0
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of 6.
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
6x6=y6+-4z6
x-7y+z=0
Step 1.2.2.1.2
Divide x by 1.
x=y6+-4z6
x-7y+z=0
x=y6+-4z6
x-7y+z=0
x=y6+-4z6
x-7y+z=0
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.2.3.1.1
Cancel the common factor of -4 and 6.
Tap for more steps...
Step 1.2.3.1.1.1
Factor 2 out of -4z.
x=y6+2(-2z)6
x-7y+z=0
Step 1.2.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.1.1.2.1
Factor 2 out of 6.
x=y6+2(-2z)2(3)
x-7y+z=0
Step 1.2.3.1.1.2.2
Cancel the common factor.
x=y6+2(-2z)23
x-7y+z=0
Step 1.2.3.1.1.2.3
Rewrite the expression.
x=y6+-2z3
x-7y+z=0
x=y6+-2z3
x-7y+z=0
x=y6+-2z3
x-7y+z=0
Step 1.2.3.1.2
Move the negative in front of the fraction.
x=y6-2z3
x-7y+z=0
x=y6-2z3
x-7y+z=0
x=y6-2z3
x-7y+z=0
x=y6-2z3
x-7y+z=0
x=y6-2z3
x-7y+z=0
Step 2
Solve the equation for z.
Tap for more steps...
Step 2.1
Simplify (y6-2z3)-7y+z.
Tap for more steps...
Step 2.1.1
To write -7y as a fraction with a common denominator, multiply by 66.
-2z3+y6-7y66+z=0
x=y6-2z3
Step 2.1.2
Simplify terms.
Tap for more steps...
Step 2.1.2.1
Combine -7y and 66.
-2z3+y6+-7y66+z=0
x=y6-2z3
Step 2.1.2.2
Combine the numerators over the common denominator.
-2z3+y-7y66+z=0
x=y6-2z3
-2z3+y-7y66+z=0
x=y6-2z3
Step 2.1.3
Simplify each term.
Tap for more steps...
Step 2.1.3.1
Simplify the numerator.
Tap for more steps...
Step 2.1.3.1.1
Factor y out of y-7y6.
Tap for more steps...
Step 2.1.3.1.1.1
Raise y to the power of 1.
-2z3+y-7y66+z=0
x=y6-2z3
Step 2.1.3.1.1.2
Factor y out of y1.
-2z3+y1-7y66+z=0
x=y6-2z3
Step 2.1.3.1.1.3
Factor y out of -7y6.
-2z3+y1+y(-76)6+z=0
x=y6-2z3
Step 2.1.3.1.1.4
Factor y out of y1+y(-76).
-2z3+y(1-76)6+z=0
x=y6-2z3
-2z3+y(1-76)6+z=0
x=y6-2z3
Step 2.1.3.1.2
Multiply -7 by 6.
-2z3+y(1-42)6+z=0
x=y6-2z3
Step 2.1.3.1.3
Subtract 42 from 1.
-2z3+y-416+z=0
x=y6-2z3
-2z3+y-416+z=0
x=y6-2z3
Step 2.1.3.2
Move -41 to the left of y.
-2z3+-41y6+z=0
x=y6-2z3
Step 2.1.3.3
Move the negative in front of the fraction.
-2z3-41y6+z=0
x=y6-2z3
-2z3-41y6+z=0
x=y6-2z3
Step 2.1.4
To write z as a fraction with a common denominator, multiply by 33.
-41y6-2z3+z33=0
x=y6-2z3
Step 2.1.5
Combine z and 33.
-41y6-2z3+z33=0
x=y6-2z3
Step 2.1.6
Combine the numerators over the common denominator.
-41y6+-2z+z33=0
x=y6-2z3
Step 2.1.7
Add -2z and z3.
Tap for more steps...
Step 2.1.7.1
Reorder z and 3.
-41y6+-2z+3z3=0
x=y6-2z3
Step 2.1.7.2
Add -2z and 3z.
-41y6+z3=0
x=y6-2z3
-41y6+z3=0
x=y6-2z3
-41y6+z3=0
x=y6-2z3
Step 2.2
Add 41y6 to both sides of the equation.
z3=41y6
x=y6-2z3
Step 2.3
Multiply both sides of the equation by 3.
3(z3)=3(41y6)
x=y6-2z3
Step 2.4
Simplify both sides of the equation.
Tap for more steps...
Step 2.4.1
Simplify the left side.
Tap for more steps...
Step 2.4.1.1
Cancel the common factor of 3.
Tap for more steps...
Step 2.4.1.1.1
Cancel the common factor.
3(z3)=3(41y6)
x=y6-2z3
Step 2.4.1.1.2
Rewrite the expression.
z=3(41y6)
x=y6-2z3
z=3(41y6)
x=y6-2z3
z=3(41y6)
x=y6-2z3
Step 2.4.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 2.4.2.1.1
Factor 3 out of 6.
z=3(41y3(2))
x=y6-2z3
Step 2.4.2.1.2
Cancel the common factor.
z=3(41y32)
x=y6-2z3
Step 2.4.2.1.3
Rewrite the expression.
z=41y2
x=y6-2z3
z=41y2
x=y6-2z3
z=41y2
x=y6-2z3
z=41y2
x=y6-2z3
z=41y2
x=y6-2z3
Step 3
Simplify the right side.
Tap for more steps...
Step 3.1
Simplify y6-2(41y2)3.
Tap for more steps...
Step 3.1.1
Simplify each term.
Tap for more steps...
Step 3.1.1.1
Combine 2 and 41y2.
x=y6-2(41y)23
z=41y2
Step 3.1.1.2
Multiply 2 by 41.
x=y6-82y23
z=41y2
Step 3.1.1.3
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.1.1.3.1
Reduce the expression 82y2 by cancelling the common factors.
Tap for more steps...
Step 3.1.1.3.1.1
Factor 2 out of 82y.
x=y6-2(41y)23
z=41y2
Step 3.1.1.3.1.2
Factor 2 out of 2.
x=y6-2(41y)2(1)3
z=41y2
Step 3.1.1.3.1.3
Cancel the common factor.
x=y6-2(41y)213
z=41y2
Step 3.1.1.3.1.4
Rewrite the expression.
x=y6-41y13
z=41y2
x=y6-41y13
z=41y2
Step 3.1.1.3.2
Divide 41y by 1.
x=y6-41y3
z=41y2
x=y6-41y3
z=41y2
x=y6-41y3
z=41y2
Step 3.1.2
To write -41y3 as a fraction with a common denominator, multiply by 22.
x=y6-41y322
z=41y2
Step 3.1.3
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.1.3.1
Multiply 41y3 by 22.
x=y6-41y232
z=41y2
Step 3.1.3.2
Multiply 3 by 2.
x=y6-41y26
z=41y2
x=y6-41y26
z=41y2
Step 3.1.4
Combine the numerators over the common denominator.
x=y-41y26
z=41y2
Step 3.1.5
Simplify the numerator.
Tap for more steps...
Step 3.1.5.1
Factor y out of y-41y2.
Tap for more steps...
Step 3.1.5.1.1
Raise y to the power of 1.
x=y-41y26
z=41y2
Step 3.1.5.1.2
Factor y out of y1.
x=y1-41y26
z=41y2
Step 3.1.5.1.3
Factor y out of -41y2.
x=y1+y(-412)6
z=41y2
Step 3.1.5.1.4
Factor y out of y1+y(-412).
x=y(1-412)6
z=41y2
x=y(1-412)6
z=41y2
Step 3.1.5.2
Multiply -41 by 2.
x=y(1-82)6
z=41y2
Step 3.1.5.3
Subtract 82 from 1.
x=y-816
z=41y2
x=y-816
z=41y2
Step 3.1.6
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.1.6.1
Cancel the common factor of -81 and 6.
Tap for more steps...
Step 3.1.6.1.1
Factor 3 out of y-81.
x=3(y-27)6
z=41y2
Step 3.1.6.1.2
Cancel the common factors.
Tap for more steps...
Step 3.1.6.1.2.1
Factor 3 out of 6.
x=3(y-27)3(2)
z=41y2
Step 3.1.6.1.2.2
Cancel the common factor.
x=3(y-27)32
z=41y2
Step 3.1.6.1.2.3
Rewrite the expression.
x=y-272
z=41y2
x=y-272
z=41y2
x=y-272
z=41y2
Step 3.1.6.2
Simplify the expression.
Tap for more steps...
Step 3.1.6.2.1
Move -27 to the left of y.
x=-27y2
z=41y2
Step 3.1.6.2.2
Move the negative in front of the fraction.
x=-27y2
z=41y2
x=-27y2
z=41y2
x=-27y2
z=41y2
x=-27y2
z=41y2
x=-27y2
z=41y2
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay