Precalculus Examples
x+2y=4x+2y=4 , 2x+4y=82x+4y=8
Step 1
Multiply each equation by the value that makes the coefficients of xx opposite.
(-2)⋅(x+2y)=(-2)(4)(−2)⋅(x+2y)=(−2)(4)
2x+4y=82x+4y=8
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify (-2)⋅(x+2y)(−2)⋅(x+2y).
Step 2.1.1.1
Apply the distributive property.
-2x-2(2y)=(-2)(4)−2x−2(2y)=(−2)(4)
2x+4y=82x+4y=8
Step 2.1.1.2
Multiply 22 by -2−2.
-2x-4y=(-2)(4)−2x−4y=(−2)(4)
2x+4y=82x+4y=8
-2x-4y=(-2)(4)−2x−4y=(−2)(4)
2x+4y=82x+4y=8
-2x-4y=(-2)(4)−2x−4y=(−2)(4)
2x+4y=82x+4y=8
Step 2.2
Simplify the right side.
Step 2.2.1
Multiply -2−2 by 44.
-2x-4y=-8−2x−4y=−8
2x+4y=82x+4y=8
-2x-4y=-8−2x−4y=−8
2x+4y=82x+4y=8
-2x-4y=-8−2x−4y=−8
2x+4y=82x+4y=8
Step 3
Add the two equations together to eliminate xx from the system.
-− | 22 | xx | -− | 44 | yy | == | -− | 88 | |||
++ | 22 | xx | ++ | 44 | yy | == | 88 | ||||
00 | == | 00 |
Step 4
Since 0=00=0, the equations intersect at an infinite number of points.
Infinite number of solutions
Step 5
Step 5.1
Add 2x2x to both sides of the equation.
-4y=-8+2x−4y=−8+2x
Step 5.2
Divide each term in -4y=-8+2x−4y=−8+2x by -4−4 and simplify.
Step 5.2.1
Divide each term in -4y=-8+2x−4y=−8+2x by -4−4.
-4y-4=-8-4+2x-4−4y−4=−8−4+2x−4
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of -4−4.
Step 5.2.2.1.1
Cancel the common factor.
-4y-4=-8-4+2x-4
Step 5.2.2.1.2
Divide y by 1.
y=-8-4+2x-4
y=-8-4+2x-4
y=-8-4+2x-4
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Simplify each term.
Step 5.2.3.1.1
Divide -8 by -4.
y=2+2x-4
Step 5.2.3.1.2
Cancel the common factor of 2 and -4.
Step 5.2.3.1.2.1
Factor 2 out of 2x.
y=2+2(x)-4
Step 5.2.3.1.2.2
Cancel the common factors.
Step 5.2.3.1.2.2.1
Factor 2 out of -4.
y=2+2x2⋅-2
Step 5.2.3.1.2.2.2
Cancel the common factor.
y=2+2x2⋅-2
Step 5.2.3.1.2.2.3
Rewrite the expression.
y=2+x-2
y=2+x-2
y=2+x-2
Step 5.2.3.1.3
Move the negative in front of the fraction.
y=2-x2
y=2-x2
y=2-x2
y=2-x2
y=2-x2
Step 6
The solution is the set of ordered pairs that make y=2-x2 true.
(x,2-x2)
Step 7
The result can be shown in multiple forms.
Point Form:
(x,2-x2)
Equation Form:
x=x,y=2-x2
Step 8