Precalculus Examples
1818 , 66 , 22
Step 1
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by 1313 gives the next term. In other words, an=a1rn-1an=a1rn−1.
Geometric Sequence: r=13r=13
Step 2
This is the form of a geometric sequence.
an=a1rn-1an=a1rn−1
Step 3
Substitute in the values of a1=18a1=18 and r=13r=13.
an=18(13)n-1an=18(13)n−1
Step 4
Apply the product rule to 1313.
an=181n-13n-1an=181n−13n−1
Step 5
One to any power is one.
an=1813n-1an=1813n−1
Step 6
Combine 1818 and 13n-113n−1.
an=183n-1an=183n−1
Step 7
This is the formula to find the sum of the first nn terms of the geometric sequence. To evaluate it, find the values of rr and a1a1.
Sn=a1(rn-1)r-1Sn=a1(rn−1)r−1
Step 8
Replace the variables with the known values to find S5S5.
S5=18⋅(13)5-113-1S5=18⋅(13)5−113−1
Step 9
Step 9.1
Apply the product rule to 1313.
S5=18⋅1535-113-1S5=18⋅1535−113−1
Step 9.2
One to any power is one.
S5=18⋅135-113-1S5=18⋅135−113−1
Step 9.3
Raise 33 to the power of 55.
S5=18⋅1243-113-1S5=18⋅1243−113−1
Step 9.4
To write -1−1 as a fraction with a common denominator, multiply by 243243243243.
S5=18⋅1243-1⋅24324313-1S5=18⋅1243−1⋅24324313−1
Step 9.5
Combine -1−1 and 243243243243.
S5=18⋅1243+-1⋅24324313-1S5=18⋅1243+−1⋅24324313−1
Step 9.6
Combine the numerators over the common denominator.
S5=18⋅1-1⋅24324313-1S5=18⋅1−1⋅24324313−1
Step 9.7
Simplify the numerator.
Step 9.7.1
Multiply -1 by 243.
S5=18⋅1-24324313-1
Step 9.7.2
Subtract 243 from 1.
S5=18⋅-24224313-1
S5=18⋅-24224313-1
Step 9.8
Move the negative in front of the fraction.
S5=18⋅-24224313-1
S5=18⋅-24224313-1
Step 10
Step 10.1
To write -1 as a fraction with a common denominator, multiply by 33.
S5=18⋅-24224313-1⋅33
Step 10.2
Combine -1 and 33.
S5=18⋅-24224313+-1⋅33
Step 10.3
Combine the numerators over the common denominator.
S5=18⋅-2422431-1⋅33
Step 10.4
Simplify the numerator.
Step 10.4.1
Multiply -1 by 3.
S5=18⋅-2422431-33
Step 10.4.2
Subtract 3 from 1.
S5=18⋅-242243-23
S5=18⋅-242243-23
Step 10.5
Move the negative in front of the fraction.
S5=18⋅-242243-23
S5=18⋅-242243-23
Step 11
Dividing two negative values results in a positive value.
S5=18⋅24224323
Step 12
Multiply the numerator by the reciprocal of the denominator.
S5=18⋅(242243⋅32)
Step 13
Step 13.1
Factor 2 out of 242.
S5=18⋅(2(121)243⋅32)
Step 13.2
Cancel the common factor.
S5=18⋅(2⋅121243⋅32)
Step 13.3
Rewrite the expression.
S5=18⋅(121243⋅3)
S5=18⋅(121243⋅3)
Step 14
Step 14.1
Factor 3 out of 243.
S5=18⋅(1213(81)⋅3)
Step 14.2
Cancel the common factor.
S5=18⋅(1213⋅81⋅3)
Step 14.3
Rewrite the expression.
S5=18⋅12181
S5=18⋅12181
Step 15
Step 15.1
Factor 9 out of 18.
S5=9(2)⋅12181
Step 15.2
Factor 9 out of 81.
S5=9⋅2⋅1219⋅9
Step 15.3
Cancel the common factor.
S5=9⋅2⋅1219⋅9
Step 15.4
Rewrite the expression.
S5=2⋅1219
S5=2⋅1219
Step 16
Combine 2 and 1219.
S5=2⋅1219
Step 17
Multiply 2 by 121.
S5=2429
Step 18
Convert the fraction to a decimal.
S5=26.‾8