Precalculus Examples
53y+52=553y+52=5
Step 1
Step 1.1
Subtract 5252 from both sides of the equation.
53y=5-5253y=5−52
Step 1.2
To write 55 as a fraction with a common denominator, multiply by 2222.
53y=5⋅22-5253y=5⋅22−52
Step 1.3
Combine 55 and 2222.
53y=5⋅22-5253y=5⋅22−52
Step 1.4
Combine the numerators over the common denominator.
53y=5⋅2-5253y=5⋅2−52
Step 1.5
Simplify the numerator.
Step 1.5.1
Multiply 55 by 22.
53y=10-5253y=10−52
Step 1.5.2
Subtract 55 from 1010.
53y=5253y=52
53y=5253y=52
53y=5253y=52
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
3y,23y,2
Step 2.2
Since 3y,23y,2 contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part 3,23,2 then find LCM for the variable part y1y1.
Step 2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.4
Since 33 has no factors besides 11 and 33.
33 is a prime number
Step 2.5
Since 22 has no factors besides 11 and 22.
22 is a prime number
Step 2.6
The LCM of 3,23,2 is the result of multiplying all prime factors the greatest number of times they occur in either number.
2⋅32⋅3
Step 2.7
Multiply 22 by 33.
66
Step 2.8
The factor for y1y1 is yy itself.
y1=yy1=y
yy occurs 11 time.
Step 2.9
The LCM of y1y1 is the result of multiplying all prime factors the greatest number of times they occur in either term.
yy
Step 2.10
The LCM for 3y,23y,2 is the numeric part 66 multiplied by the variable part.
6y6y
6y6y
Step 3
Step 3.1
Multiply each term in 53y=5253y=52 by 6y6y.
53y(6y)=52(6y)53y(6y)=52(6y)
Step 3.2
Simplify the left side.
Step 3.2.1
Rewrite using the commutative property of multiplication.
653yy=52(6y)653yy=52(6y)
Step 3.2.2
Cancel the common factor of 33.
Step 3.2.2.1
Factor 33 out of 66.
3(2)53yy=52(6y)3(2)53yy=52(6y)
Step 3.2.2.2
Factor 33 out of 3y3y.
3(2)53(y)y=52(6y)3(2)53(y)y=52(6y)
Step 3.2.2.3
Cancel the common factor.
3⋅253yy=52(6y)
Step 3.2.2.4
Rewrite the expression.
25yy=52(6y)
25yy=52(6y)
Step 3.2.3
Combine 2 and 5y.
2⋅5yy=52(6y)
Step 3.2.4
Multiply 2 by 5.
10yy=52(6y)
Step 3.2.5
Cancel the common factor of y.
Step 3.2.5.1
Cancel the common factor.
10yy=52(6y)
Step 3.2.5.2
Rewrite the expression.
10=52(6y)
10=52(6y)
10=52(6y)
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of 2.
Step 3.3.1.1
Factor 2 out of 6y.
10=52(2(3y))
Step 3.3.1.2
Cancel the common factor.
10=52(2(3y))
Step 3.3.1.3
Rewrite the expression.
10=5(3y)
10=5(3y)
Step 3.3.2
Multiply 3 by 5.
10=15y
10=15y
10=15y
Step 4
Step 4.1
Rewrite the equation as 15y=10.
15y=10
Step 4.2
Divide each term in 15y=10 by 15 and simplify.
Step 4.2.1
Divide each term in 15y=10 by 15.
15y15=1015
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of 15.
Step 4.2.2.1.1
Cancel the common factor.
15y15=1015
Step 4.2.2.1.2
Divide y by 1.
y=1015
y=1015
y=1015
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Cancel the common factor of 10 and 15.
Step 4.2.3.1.1
Factor 5 out of 10.
y=5(2)15
Step 4.2.3.1.2
Cancel the common factors.
Step 4.2.3.1.2.1
Factor 5 out of 15.
y=5⋅25⋅3
Step 4.2.3.1.2.2
Cancel the common factor.
y=5⋅25⋅3
Step 4.2.3.1.2.3
Rewrite the expression.
y=23
y=23
y=23
y=23
y=23
y=23
Step 5
The result can be shown in multiple forms.
Exact Form:
y=23
Decimal Form:
y=0.‾6