Precalculus Examples

52-i52i
Step 1
Multiply the numerator and denominator of 52-i52i by the conjugate of 2-i2i to make the denominator real.
52-i2+i2+i52i2+i2+i
Step 2
Multiply.
Tap for more steps...
Step 2.1
Combine.
5(2+i)(2-i)(2+i)5(2+i)(2i)(2+i)
Step 2.2
Simplify the numerator.
Tap for more steps...
Step 2.2.1
Apply the distributive property.
52+5i(2-i)(2+i)52+5i(2i)(2+i)
Step 2.2.2
Multiply 55 by 22.
10+5i(2-i)(2+i)10+5i(2i)(2+i)
10+5i(2-i)(2+i)10+5i(2i)(2+i)
Step 2.3
Simplify the denominator.
Tap for more steps...
Step 2.3.1
Expand (2-i)(2+i)(2i)(2+i) using the FOIL Method.
Tap for more steps...
Step 2.3.1.1
Apply the distributive property.
10+5i2(2+i)-i(2+i)10+5i2(2+i)i(2+i)
Step 2.3.1.2
Apply the distributive property.
10+5i22+2i-i(2+i)10+5i22+2ii(2+i)
Step 2.3.1.3
Apply the distributive property.
10+5i22+2i-i2-ii10+5i22+2ii2ii
10+5i22+2i-i2-ii10+5i22+2ii2ii
Step 2.3.2
Simplify.
Tap for more steps...
Step 2.3.2.1
Multiply 22 by 22.
10+5i4+2i-i2-ii10+5i4+2ii2ii
Step 2.3.2.2
Multiply 22 by -11.
10+5i4+2i-2i-ii10+5i4+2i2iii
Step 2.3.2.3
Raise ii to the power of 11.
10+5i4+2i-2i-(i1i)10+5i4+2i2i(i1i)
Step 2.3.2.4
Raise ii to the power of 11.
10+5i4+2i-2i-(i1i1)10+5i4+2i2i(i1i1)
Step 2.3.2.5
Use the power rule aman=am+naman=am+n to combine exponents.
10+5i4+2i-2i-i1+110+5i4+2i2ii1+1
Step 2.3.2.6
Add 11 and 11.
10+5i4+2i-2i-i210+5i4+2i2ii2
Step 2.3.2.7
Subtract 2i2i from 2i2i.
10+5i4+0-i210+5i4+0i2
Step 2.3.2.8
Add 44 and 00.
10+5i4-i210+5i4i2
10+5i4-i210+5i4i2
Step 2.3.3
Simplify each term.
Tap for more steps...
Step 2.3.3.1
Rewrite i2i2 as -11.
10+5i4--110+5i41
Step 2.3.3.2
Multiply -11 by -11.
10+5i4+110+5i4+1
10+5i4+110+5i4+1
Step 2.3.4
Add 44 and 11.
10+5i510+5i5
10+5i510+5i5
10+5i510+5i5
Step 3
Cancel the common factor of 10+5i10+5i and 55.
Tap for more steps...
Step 3.1
Factor 55 out of 1010.
52+5i552+5i5
Step 3.2
Factor 55 out of 5i5i.
52+5(i)552+5(i)5
Step 3.3
Factor 55 out of 5(2)+5(i)5(2)+5(i).
5(2+i)55(2+i)5
Step 3.4
Cancel the common factors.
Tap for more steps...
Step 3.4.1
Factor 55 out of 55.
5(2+i)5(1)5(2+i)5(1)
Step 3.4.2
Cancel the common factor.
5(2+i)51
Step 3.4.3
Rewrite the expression.
2+i1
Step 3.4.4
Divide 2+i by 1.
2+i
2+i
2+i
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay