Precalculus Examples
52-i52−i
Step 1
Multiply the numerator and denominator of 52-i52−i by the conjugate of 2-i2−i to make the denominator real.
52-i⋅2+i2+i52−i⋅2+i2+i
Step 2
Step 2.1
Combine.
5(2+i)(2-i)(2+i)5(2+i)(2−i)(2+i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Apply the distributive property.
5⋅2+5i(2-i)(2+i)5⋅2+5i(2−i)(2+i)
Step 2.2.2
Multiply 55 by 22.
10+5i(2-i)(2+i)10+5i(2−i)(2+i)
10+5i(2-i)(2+i)10+5i(2−i)(2+i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (2-i)(2+i)(2−i)(2+i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
10+5i2(2+i)-i(2+i)10+5i2(2+i)−i(2+i)
Step 2.3.1.2
Apply the distributive property.
10+5i2⋅2+2i-i(2+i)10+5i2⋅2+2i−i(2+i)
Step 2.3.1.3
Apply the distributive property.
10+5i2⋅2+2i-i⋅2-ii10+5i2⋅2+2i−i⋅2−ii
10+5i2⋅2+2i-i⋅2-ii10+5i2⋅2+2i−i⋅2−ii
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 22 by 22.
10+5i4+2i-i⋅2-ii10+5i4+2i−i⋅2−ii
Step 2.3.2.2
Multiply 22 by -1−1.
10+5i4+2i-2i-ii10+5i4+2i−2i−ii
Step 2.3.2.3
Raise ii to the power of 11.
10+5i4+2i-2i-(i1i)10+5i4+2i−2i−(i1i)
Step 2.3.2.4
Raise ii to the power of 11.
10+5i4+2i-2i-(i1i1)10+5i4+2i−2i−(i1i1)
Step 2.3.2.5
Use the power rule aman=am+naman=am+n to combine exponents.
10+5i4+2i-2i-i1+110+5i4+2i−2i−i1+1
Step 2.3.2.6
Add 11 and 11.
10+5i4+2i-2i-i210+5i4+2i−2i−i2
Step 2.3.2.7
Subtract 2i2i from 2i2i.
10+5i4+0-i210+5i4+0−i2
Step 2.3.2.8
Add 44 and 00.
10+5i4-i210+5i4−i2
10+5i4-i210+5i4−i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2i2 as -1−1.
10+5i4--110+5i4−−1
Step 2.3.3.2
Multiply -1−1 by -1−1.
10+5i4+110+5i4+1
10+5i4+110+5i4+1
Step 2.3.4
Add 44 and 11.
10+5i510+5i5
10+5i510+5i5
10+5i510+5i5
Step 3
Step 3.1
Factor 55 out of 1010.
5⋅2+5i55⋅2+5i5
Step 3.2
Factor 55 out of 5i5i.
5⋅2+5(i)55⋅2+5(i)5
Step 3.3
Factor 55 out of 5(2)+5(i)5(2)+5(i).
5(2+i)55(2+i)5
Step 3.4
Cancel the common factors.
Step 3.4.1
Factor 55 out of 55.
5(2+i)5(1)5(2+i)5(1)
Step 3.4.2
Cancel the common factor.
5(2+i)5⋅1
Step 3.4.3
Rewrite the expression.
2+i1
Step 3.4.4
Divide 2+i by 1.
2+i
2+i
2+i