Precalculus Examples
(0,9)(0,9) , (5,4)(5,4) , (1,4)(1,4)
Step 1
Use the standard form of a quadratic equation y=ax2+bx+cy=ax2+bx+c as the starting point for finding the equation through the three points.
y=ax2+bx+cy=ax2+bx+c
Step 2
Create a system of equations by substituting the xx and yy values of each point into the standard formula of a quadratic equation to create the three equation system.
9=a(0)2+b(0)+c,4=a(5)2+b(5)+c,4=a(1)2+b(1)+c9=a(0)2+b(0)+c,4=a(5)2+b(5)+c,4=a(1)2+b(1)+c
Step 3
Step 3.1
Solve for cc in 9=a⋅02+c9=a⋅02+c.
Step 3.1.1
Rewrite the equation as a⋅02+c=9a⋅02+c=9.
a⋅02+c=9a⋅02+c=9
4=a⋅52+b(5)+c4=a⋅52+b(5)+c
4=a+b+c4=a+b+c
Step 3.1.2
Simplify a⋅02+ca⋅02+c.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Raising 00 to any positive power yields 00.
a⋅0+c=9a⋅0+c=9
4=a⋅52+b(5)+c4=a⋅52+b(5)+c
4=a+b+c4=a+b+c
Step 3.1.2.1.2
Multiply aa by 00.
0+c=90+c=9
4=a⋅52+b(5)+c4=a⋅52+b(5)+c
4=a+b+c4=a+b+c
0+c=90+c=9
4=a⋅52+b(5)+c4=a⋅52+b(5)+c
4=a+b+c4=a+b+c
Step 3.1.2.2
Add 00 and cc.
c=9c=9
4=a⋅52+b(5)+c4=a⋅52+b(5)+c
4=a+b+c4=a+b+c
c=9c=9
4=a⋅52+b(5)+c4=a⋅52+b(5)+c
4=a+b+c4=a+b+c
c=9c=9
4=a⋅52+b(5)+c4=a⋅52+b(5)+c
4=a+b+c4=a+b+c
Step 3.2
Replace all occurrences of cc with 99 in each equation.
Step 3.2.1
Replace all occurrences of cc in 4=a⋅52+b(5)+c4=a⋅52+b(5)+c with 99.
4=a⋅52+b(5)+94=a⋅52+b(5)+9
c=9c=9
4=a+b+c4=a+b+c
Step 3.2.2
Simplify 4=a⋅52+b(5)+94=a⋅52+b(5)+9.
Step 3.2.2.1
Simplify the left side.
Step 3.2.2.1.1
Remove parentheses.
4=a⋅52+b(5)+94=a⋅52+b(5)+9
c=9c=9
4=a+b+c4=a+b+c
4=a⋅52+b(5)+94=a⋅52+b(5)+9
c=9c=9
4=a+b+c4=a+b+c
Step 3.2.2.2
Simplify the right side.
Step 3.2.2.2.1
Simplify each term.
Step 3.2.2.2.1.1
Raise 55 to the power of 22.
4=a⋅25+b(5)+94=a⋅25+b(5)+9
c=9c=9
4=a+b+c4=a+b+c
Step 3.2.2.2.1.2
Move 2525 to the left of aa.
4=25⋅a+b(5)+94=25⋅a+b(5)+9
c=9c=9
4=a+b+c4=a+b+c
Step 3.2.2.2.1.3
Move 55 to the left of bb.
4=25a+5b+94=25a+5b+9
c=9c=9
4=a+b+c4=a+b+c
4=25a+5b+94=25a+5b+9
c=9c=9
4=a+b+c4=a+b+c
4=25a+5b+94=25a+5b+9
c=9c=9
4=a+b+c4=a+b+c
4=25a+5b+94=25a+5b+9
c=9c=9
4=a+b+c4=a+b+c
Step 3.2.3
Replace all occurrences of cc in 4=a+b+c4=a+b+c with 99.
4=a+b+94=a+b+9
4=25a+5b+94=25a+5b+9
c=9c=9
Step 3.2.4
Simplify the left side.
Step 3.2.4.1
Remove parentheses.
4=a+b+94=a+b+9
4=25a+5b+94=25a+5b+9
c=9c=9
4=a+b+94=a+b+9
4=25a+5b+94=25a+5b+9
c=9c=9
4=a+b+94=a+b+9
4=25a+5b+94=25a+5b+9
c=9
Step 3.3
Solve for a in 4=a+b+9.
Step 3.3.1
Rewrite the equation as a+b+9=4.
a+b+9=4
4=25a+5b+9
c=9
Step 3.3.2
Move all terms not containing a to the right side of the equation.
Step 3.3.2.1
Subtract b from both sides of the equation.
a+9=4-b
4=25a+5b+9
c=9
Step 3.3.2.2
Subtract 9 from both sides of the equation.
a=4-b-9
4=25a+5b+9
c=9
Step 3.3.2.3
Subtract 9 from 4.
a=-b-5
4=25a+5b+9
c=9
a=-b-5
4=25a+5b+9
c=9
a=-b-5
4=25a+5b+9
c=9
Step 3.4
Replace all occurrences of a with -b-5 in each equation.
Step 3.4.1
Replace all occurrences of a in 4=25a+5b+9 with -b-5.
4=25(-b-5)+5b+9
a=-b-5
c=9
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify 25(-b-5)+5b+9.
Step 3.4.2.1.1
Simplify each term.
Step 3.4.2.1.1.1
Apply the distributive property.
4=25(-b)+25⋅-5+5b+9
a=-b-5
c=9
Step 3.4.2.1.1.2
Multiply -1 by 25.
4=-25b+25⋅-5+5b+9
a=-b-5
c=9
Step 3.4.2.1.1.3
Multiply 25 by -5.
4=-25b-125+5b+9
a=-b-5
c=9
4=-25b-125+5b+9
a=-b-5
c=9
Step 3.4.2.1.2
Simplify by adding terms.
Step 3.4.2.1.2.1
Add -25b and 5b.
4=-20b-125+9
a=-b-5
c=9
Step 3.4.2.1.2.2
Add -125 and 9.
4=-20b-116
a=-b-5
c=9
4=-20b-116
a=-b-5
c=9
4=-20b-116
a=-b-5
c=9
4=-20b-116
a=-b-5
c=9
4=-20b-116
a=-b-5
c=9
Step 3.5
Solve for b in 4=-20b-116.
Step 3.5.1
Rewrite the equation as -20b-116=4.
-20b-116=4
a=-b-5
c=9
Step 3.5.2
Move all terms not containing b to the right side of the equation.
Step 3.5.2.1
Add 116 to both sides of the equation.
-20b=4+116
a=-b-5
c=9
Step 3.5.2.2
Add 4 and 116.
-20b=120
a=-b-5
c=9
-20b=120
a=-b-5
c=9
Step 3.5.3
Divide each term in -20b=120 by -20 and simplify.
Step 3.5.3.1
Divide each term in -20b=120 by -20.
-20b-20=120-20
a=-b-5
c=9
Step 3.5.3.2
Simplify the left side.
Step 3.5.3.2.1
Cancel the common factor of -20.
Step 3.5.3.2.1.1
Cancel the common factor.
-20b-20=120-20
a=-b-5
c=9
Step 3.5.3.2.1.2
Divide b by 1.
b=120-20
a=-b-5
c=9
b=120-20
a=-b-5
c=9
b=120-20
a=-b-5
c=9
Step 3.5.3.3
Simplify the right side.
Step 3.5.3.3.1
Divide 120 by -20.
b=-6
a=-b-5
c=9
b=-6
a=-b-5
c=9
b=-6
a=-b-5
c=9
b=-6
a=-b-5
c=9
Step 3.6
Replace all occurrences of b with -6 in each equation.
Step 3.6.1
Replace all occurrences of b in a=-b-5 with -6.
a=-(-6)-5
b=-6
c=9
Step 3.6.2
Simplify the right side.
Step 3.6.2.1
Simplify -(-6)-5.
Step 3.6.2.1.1
Multiply -1 by -6.
a=6-5
b=-6
c=9
Step 3.6.2.1.2
Subtract 5 from 6.
a=1
b=-6
c=9
a=1
b=-6
c=9
a=1
b=-6
c=9
a=1
b=-6
c=9
Step 3.7
List all of the solutions.
a=1,b=-6,c=9
a=1,b=-6,c=9
Step 4
Substitute the actual values of a,b, and c into the formula for a quadratic equation to find the resulting equation.
y=x2-6x+9
Step 5