Precalculus Examples

f(x)=64x
Step 1
Write f(x)=64x as an equation.
y=64x
Step 2
Interchange the variables.
x=64y
Step 3
Solve for y.
Tap for more steps...
Step 3.1
Rewrite the equation as 64y=x.
64y=x
Step 3.2
Subtract 6 from both sides of the equation.
4y=x6
Step 3.3
Divide each term in 4y=x6 by 4 and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in 4y=x6 by 4.
4y4=x4+64
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of 4.
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
4y4=x4+64
Step 3.3.2.1.2
Divide y by 1.
y=x4+64
y=x4+64
y=x4+64
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.3.1.1
Move the negative in front of the fraction.
y=x4+64
Step 3.3.3.1.2
Cancel the common factor of 6 and 4.
Tap for more steps...
Step 3.3.3.1.2.1
Factor 2 out of 6.
y=x4+2(3)4
Step 3.3.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 3.3.3.1.2.2.1
Factor 2 out of 4.
y=x4+2322
Step 3.3.3.1.2.2.2
Cancel the common factor.
y=x4+2322
Step 3.3.3.1.2.2.3
Rewrite the expression.
y=x4+32
y=x4+32
y=x4+32
y=x4+32
y=x4+32
y=x4+32
y=x4+32
Step 4
Replace y with f1(x) to show the final answer.
f1(x)=x4+32
Step 5
Verify if f1(x)=x4+32 is the inverse of f(x)=64x.
Tap for more steps...
Step 5.1
To verify the inverse, check if f1(f(x))=x and f(f1(x))=x.
Step 5.2
Evaluate f1(f(x)).
Tap for more steps...
Step 5.2.1
Set up the composite result function.
f1(f(x))
Step 5.2.2
Evaluate f1(64x) by substituting in the value of f into f1.
f1(64x)=64x4+32
Step 5.2.3
Simplify terms.
Tap for more steps...
Step 5.2.3.1
Cancel the common factor of 64x and 4.
Tap for more steps...
Step 5.2.3.1.1
Factor 2 out of 6.
f1(64x)=2(3)4x4+32
Step 5.2.3.1.2
Factor 2 out of 4x.
f1(64x)=2(3)+2(2x)4+32
Step 5.2.3.1.3
Factor 2 out of 2(3)+2(2x).
f1(64x)=2(32x)4+32
Step 5.2.3.1.4
Cancel the common factors.
Tap for more steps...
Step 5.2.3.1.4.1
Factor 2 out of 4.
f1(64x)=2(32x)22+32
Step 5.2.3.1.4.2
Cancel the common factor.
f1(64x)=2(32x)22+32
Step 5.2.3.1.4.3
Rewrite the expression.
f1(64x)=32x2+32
f1(64x)=32x2+32
f1(64x)=32x2+32
Step 5.2.3.2
Combine the numerators over the common denominator.
f1(64x)=(32x)+32
f1(64x)=(32x)+32
Step 5.2.4
Simplify each term.
Tap for more steps...
Step 5.2.4.1
Apply the distributive property.
f1(64x)=13(2x)+32
Step 5.2.4.2
Multiply 1 by 3.
f1(64x)=3(2x)+32
Step 5.2.4.3
Multiply 2 by 1.
f1(64x)=3+2x+32
f1(64x)=3+2x+32
Step 5.2.5
Simplify terms.
Tap for more steps...
Step 5.2.5.1
Combine the opposite terms in 3+2x+3.
Tap for more steps...
Step 5.2.5.1.1
Add 3 and 3.
f1(64x)=2x+02
Step 5.2.5.1.2
Add 2x and 0.
f1(64x)=2x2
f1(64x)=2x2
Step 5.2.5.2
Cancel the common factor of 2.
Tap for more steps...
Step 5.2.5.2.1
Cancel the common factor.
f1(64x)=2x2
Step 5.2.5.2.2
Divide x by 1.
f1(64x)=x
f1(64x)=x
f1(64x)=x
f1(64x)=x
Step 5.3
Evaluate f(f1(x)).
Tap for more steps...
Step 5.3.1
Set up the composite result function.
f(f1(x))
Step 5.3.2
Evaluate f(x4+32) by substituting in the value of f1 into f.
f(x4+32)=64(x4+32)
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Apply the distributive property.
f(x4+32)=64(x4)4(32)
Step 5.3.3.2
Cancel the common factor of 4.
Tap for more steps...
Step 5.3.3.2.1
Move the leading negative in x4 into the numerator.
f(x4+32)=64x44(32)
Step 5.3.3.2.2
Factor 4 out of 4.
f(x4+32)=6+4(1)(x4)4(32)
Step 5.3.3.2.3
Cancel the common factor.
f(x4+32)=6+4(1x4)4(32)
Step 5.3.3.2.4
Rewrite the expression.
f(x4+32)=61(x)4(32)
f(x4+32)=61(x)4(32)
Step 5.3.3.3
Multiply 1 by 1.
f(x4+32)=6+1x4(32)
Step 5.3.3.4
Multiply x by 1.
f(x4+32)=6+x4(32)
Step 5.3.3.5
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.3.5.1
Factor 2 out of 4.
f(x4+32)=6+x+2(2)(32)
Step 5.3.3.5.2
Cancel the common factor.
f(x4+32)=6+x+2(2(32))
Step 5.3.3.5.3
Rewrite the expression.
f(x4+32)=6+x23
f(x4+32)=6+x23
Step 5.3.3.6
Multiply 2 by 3.
f(x4+32)=6+x6
f(x4+32)=6+x6
Step 5.3.4
Combine the opposite terms in 6+x6.
Tap for more steps...
Step 5.3.4.1
Subtract 6 from 6.
f(x4+32)=x+0
Step 5.3.4.2
Add x and 0.
f(x4+32)=x
f(x4+32)=x
f(x4+32)=x
Step 5.4
Since f1(f(x))=x and f(f1(x))=x, then f1(x)=x4+32 is the inverse of f(x)=64x.
f1(x)=x4+32
f1(x)=x4+32
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay