Precalculus Examples

f(x)=-8x-7f(x)=8x7
Step 1
Write f(x)=-8x-7f(x)=8x7 as an equation.
y=-8x-7y=8x7
Step 2
Interchange the variables.
x=-8y-7x=8y7
Step 3
Solve for yy.
Tap for more steps...
Step 3.1
Rewrite the equation as -8y-7=x8y7=x.
-8y-7=x8y7=x
Step 3.2
Add 77 to both sides of the equation.
-8y=x+78y=x+7
Step 3.3
Divide each term in -8y=x+78y=x+7 by -88 and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in -8y=x+78y=x+7 by -88.
-8y-8=x-8+7-88y8=x8+78
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of -88.
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
-8y-8=x-8+7-8
Step 3.3.2.1.2
Divide y by 1.
y=x-8+7-8
y=x-8+7-8
y=x-8+7-8
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.3.1.1
Move the negative in front of the fraction.
y=-x8+7-8
Step 3.3.3.1.2
Move the negative in front of the fraction.
y=-x8-78
y=-x8-78
y=-x8-78
y=-x8-78
y=-x8-78
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=-x8-78
Step 5
Verify if f-1(x)=-x8-78 is the inverse of f(x)=-8x-7.
Tap for more steps...
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(-8x-7) by substituting in the value of f into f-1.
f-1(-8x-7)=--8x-78-78
Step 5.2.3
Combine the numerators over the common denominator.
f-1(-8x-7)=-(-8x-7)-78
Step 5.2.4
Simplify each term.
Tap for more steps...
Step 5.2.4.1
Apply the distributive property.
f-1(-8x-7)=-(-8x)+7-78
Step 5.2.4.2
Multiply -8 by -1.
f-1(-8x-7)=8x+7-78
Step 5.2.4.3
Multiply -1 by -7.
f-1(-8x-7)=8x+7-78
f-1(-8x-7)=8x+7-78
Step 5.2.5
Simplify terms.
Tap for more steps...
Step 5.2.5.1
Combine the opposite terms in 8x+7-7.
Tap for more steps...
Step 5.2.5.1.1
Subtract 7 from 7.
f-1(-8x-7)=8x+08
Step 5.2.5.1.2
Add 8x and 0.
f-1(-8x-7)=8x8
f-1(-8x-7)=8x8
Step 5.2.5.2
Cancel the common factor of 8.
Tap for more steps...
Step 5.2.5.2.1
Cancel the common factor.
f-1(-8x-7)=8x8
Step 5.2.5.2.2
Divide x by 1.
f-1(-8x-7)=x
f-1(-8x-7)=x
f-1(-8x-7)=x
f-1(-8x-7)=x
Step 5.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(-x8-78) by substituting in the value of f-1 into f.
f(-x8-78)=-8(-x8-78)-7
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Apply the distributive property.
f(-x8-78)=-8(-x8)-8(-78)-7
Step 5.3.3.2
Cancel the common factor of 8.
Tap for more steps...
Step 5.3.3.2.1
Move the leading negative in -x8 into the numerator.
f(-x8-78)=-8-x8-8(-78)-7
Step 5.3.3.2.2
Factor 8 out of -8.
f(-x8-78)=8(-1)(-x8)-8(-78)-7
Step 5.3.3.2.3
Cancel the common factor.
f(-x8-78)=8(-1-x8)-8(-78)-7
Step 5.3.3.2.4
Rewrite the expression.
f(-x8-78)=-1(-x)-8(-78)-7
f(-x8-78)=-1(-x)-8(-78)-7
Step 5.3.3.3
Multiply -1 by -1.
f(-x8-78)=1x-8(-78)-7
Step 5.3.3.4
Multiply x by 1.
f(-x8-78)=x-8(-78)-7
Step 5.3.3.5
Cancel the common factor of 8.
Tap for more steps...
Step 5.3.3.5.1
Move the leading negative in -78 into the numerator.
f(-x8-78)=x-8(-78)-7
Step 5.3.3.5.2
Factor 8 out of -8.
f(-x8-78)=x+8(-1)(-78)-7
Step 5.3.3.5.3
Cancel the common factor.
f(-x8-78)=x+8(-1(-78))-7
Step 5.3.3.5.4
Rewrite the expression.
f(-x8-78)=x-1-7-7
f(-x8-78)=x-1-7-7
Step 5.3.3.6
Multiply -1 by -7.
f(-x8-78)=x+7-7
f(-x8-78)=x+7-7
Step 5.3.4
Combine the opposite terms in x+7-7.
Tap for more steps...
Step 5.3.4.1
Subtract 7 from 7.
f(-x8-78)=x+0
Step 5.3.4.2
Add x and 0.
f(-x8-78)=x
f(-x8-78)=x
f(-x8-78)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=-x8-78 is the inverse of f(x)=-8x-7.
f-1(x)=-x8-78
f-1(x)=-x8-78
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay