Precalculus Examples
f(x)=3x+5f(x)=3x+5 , g(x)=x3g(x)=x3 , (g∘f)(g∘f)
Step 1
Set up the composite result function.
g(f(x))g(f(x))
Step 2
Evaluate g(3x+5)g(3x+5) by substituting in the value of ff into gg.
g(3x+5)=(3x+5)3g(3x+5)=(3x+5)3
Step 3
Use the Binomial Theorem.
g(3x+5)=(3x)3+3(3x)2⋅5+3(3x)⋅52+53g(3x+5)=(3x)3+3(3x)2⋅5+3(3x)⋅52+53
Step 4
Step 4.1
Apply the product rule to 3x3x.
g(3x+5)=33x3+3(3x)2⋅5+3(3x)⋅52+53g(3x+5)=33x3+3(3x)2⋅5+3(3x)⋅52+53
Step 4.2
Raise 33 to the power of 33.
g(3x+5)=27x3+3(3x)2⋅5+3(3x)⋅52+53g(3x+5)=27x3+3(3x)2⋅5+3(3x)⋅52+53
Step 4.3
Apply the product rule to 3x3x.
g(3x+5)=27x3+3(32x2)⋅5+3(3x)⋅52+53g(3x+5)=27x3+3(32x2)⋅5+3(3x)⋅52+53
Step 4.4
Multiply 33 by 3232 by adding the exponents.
Step 4.4.1
Move 3232.
g(3x+5)=27x3+32⋅(3x2)⋅5+3(3x)⋅52+53g(3x+5)=27x3+32⋅(3x2)⋅5+3(3x)⋅52+53
Step 4.4.2
Multiply 3232 by 33.
Step 4.4.2.1
Raise 33 to the power of 11.
g(3x+5)=27x3+32⋅(3x2)⋅5+3(3x)⋅52+53g(3x+5)=27x3+32⋅(3x2)⋅5+3(3x)⋅52+53
Step 4.4.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
g(3x+5)=27x3+32+1x2⋅5+3(3x)⋅52+53g(3x+5)=27x3+32+1x2⋅5+3(3x)⋅52+53
g(3x+5)=27x3+32+1x2⋅5+3(3x)⋅52+53g(3x+5)=27x3+32+1x2⋅5+3(3x)⋅52+53
Step 4.4.3
Add 22 and 11.
g(3x+5)=27x3+33x2⋅5+3(3x)⋅52+53g(3x+5)=27x3+33x2⋅5+3(3x)⋅52+53
g(3x+5)=27x3+33x2⋅5+3(3x)⋅52+53g(3x+5)=27x3+33x2⋅5+3(3x)⋅52+53
Step 4.5
Raise 33 to the power of 33.
g(3x+5)=27x3+27x2⋅5+3(3x)⋅52+53g(3x+5)=27x3+27x2⋅5+3(3x)⋅52+53
Step 4.6
Multiply 55 by 2727.
g(3x+5)=27x3+135x2+3(3x)⋅52+53g(3x+5)=27x3+135x2+3(3x)⋅52+53
Step 4.7
Multiply 33 by 33.
g(3x+5)=27x3+135x2+9x⋅52+53g(3x+5)=27x3+135x2+9x⋅52+53
Step 4.8
Raise 55 to the power of 22.
g(3x+5)=27x3+135x2+9x⋅25+53g(3x+5)=27x3+135x2+9x⋅25+53
Step 4.9
Multiply 2525 by 99.
g(3x+5)=27x3+135x2+225x+53g(3x+5)=27x3+135x2+225x+53
Step 4.10
Raise 55 to the power of 33.
g(3x+5)=27x3+135x2+225x+125g(3x+5)=27x3+135x2+225x+125
g(3x+5)=27x3+135x2+225x+125g(3x+5)=27x3+135x2+225x+125