Precalculus Examples
f(x)=3x3-10x2+3xf(x)=3x3−10x2+3x
Step 1
Set 3x3-10x2+3x3x3−10x2+3x equal to 00.
3x3-10x2+3x=03x3−10x2+3x=0
Step 2
Step 2.1
Factor the left side of the equation.
Step 2.1.1
Factor xx out of 3x3-10x2+3x3x3−10x2+3x.
Step 2.1.1.1
Factor xx out of 3x33x3.
x(3x2)-10x2+3x=0x(3x2)−10x2+3x=0
Step 2.1.1.2
Factor xx out of -10x2−10x2.
x(3x2)+x(-10x)+3x=0x(3x2)+x(−10x)+3x=0
Step 2.1.1.3
Factor xx out of 3x3x.
x(3x2)+x(-10x)+x⋅3=0x(3x2)+x(−10x)+x⋅3=0
Step 2.1.1.4
Factor xx out of x(3x2)+x(-10x)x(3x2)+x(−10x).
x(3x2-10x)+x⋅3=0x(3x2−10x)+x⋅3=0
Step 2.1.1.5
Factor xx out of x(3x2-10x)+x⋅3x(3x2−10x)+x⋅3.
x(3x2-10x+3)=0x(3x2−10x+3)=0
x(3x2-10x+3)=0x(3x2−10x+3)=0
Step 2.1.2
Factor.
Step 2.1.2.1
Factor by grouping.
Step 2.1.2.1.1
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=3⋅3=9a⋅c=3⋅3=9 and whose sum is b=-10b=−10.
Step 2.1.2.1.1.1
Factor -10−10 out of -10x−10x.
x(3x2-10x+3)=0x(3x2−10x+3)=0
Step 2.1.2.1.1.2
Rewrite -10−10 as -1−1 plus -9−9
x(3x2+(-1-9)x+3)=0x(3x2+(−1−9)x+3)=0
Step 2.1.2.1.1.3
Apply the distributive property.
x(3x2-1x-9x+3)=0x(3x2−1x−9x+3)=0
x(3x2-1x-9x+3)=0x(3x2−1x−9x+3)=0
Step 2.1.2.1.2
Factor out the greatest common factor from each group.
Step 2.1.2.1.2.1
Group the first two terms and the last two terms.
x((3x2-1x)-9x+3)=0x((3x2−1x)−9x+3)=0
Step 2.1.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
x(x(3x-1)-3(3x-1))=0x(x(3x−1)−3(3x−1))=0
x(x(3x-1)-3(3x-1))=0x(x(3x−1)−3(3x−1))=0
Step 2.1.2.1.3
Factor the polynomial by factoring out the greatest common factor, 3x-13x−1.
x((3x-1)(x-3))=0x((3x−1)(x−3))=0
x((3x-1)(x-3))=0x((3x−1)(x−3))=0
Step 2.1.2.2
Remove unnecessary parentheses.
x(3x-1)(x-3)=0x(3x−1)(x−3)=0
x(3x-1)(x-3)=0x(3x−1)(x−3)=0
x(3x-1)(x-3)=0x(3x−1)(x−3)=0
Step 2.2
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
x=0x=0
3x-1=03x−1=0
x-3=0x−3=0
Step 2.3
Set xx equal to 00.
x=0x=0
Step 2.4
Set 3x-13x−1 equal to 00 and solve for xx.
Step 2.4.1
Set 3x-13x−1 equal to 00.
3x-1=03x−1=0
Step 2.4.2
Solve 3x-1=03x−1=0 for xx.
Step 2.4.2.1
Add 11 to both sides of the equation.
3x=13x=1
Step 2.4.2.2
Divide each term in 3x=13x=1 by 33 and simplify.
Step 2.4.2.2.1
Divide each term in 3x=13x=1 by 33.
3x3=133x3=13
Step 2.4.2.2.2
Simplify the left side.
Step 2.4.2.2.2.1
Cancel the common factor of 33.
Step 2.4.2.2.2.1.1
Cancel the common factor.
3x3=13
Step 2.4.2.2.2.1.2
Divide x by 1.
x=13
x=13
x=13
x=13
x=13
x=13
Step 2.5
Set x-3 equal to 0 and solve for x.
Step 2.5.1
Set x-3 equal to 0.
x-3=0
Step 2.5.2
Add 3 to both sides of the equation.
x=3
x=3
Step 2.6
The final solution is all the values that make x(3x-1)(x-3)=0 true.
x=0,13,3
x=0,13,3
Step 3