Precalculus Examples
[022201110]⎡⎢⎣022201110⎤⎥⎦
Step 1
Step 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|0110|
Step 1.1.4
Multiply element a11 by its cofactor.
0|0110|
Step 1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2110|
Step 1.1.6
Multiply element a12 by its cofactor.
-2|2110|
Step 1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2011|
Step 1.1.8
Multiply element a13 by its cofactor.
2|2011|
Step 1.1.9
Add the terms together.
0|0110|-2|2110|+2|2011|
0|0110|-2|2110|+2|2011|
Step 1.2
Multiply 0 by |0110|.
0-2|2110|+2|2011|
Step 1.3
Evaluate |2110|.
Step 1.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-2(2⋅0-1⋅1)+2|2011|
Step 1.3.2
Simplify the determinant.
Step 1.3.2.1
Simplify each term.
Step 1.3.2.1.1
Multiply 2 by 0.
0-2(0-1⋅1)+2|2011|
Step 1.3.2.1.2
Multiply -1 by 1.
0-2(0-1)+2|2011|
0-2(0-1)+2|2011|
Step 1.3.2.2
Subtract 1 from 0.
0-2⋅-1+2|2011|
0-2⋅-1+2|2011|
0-2⋅-1+2|2011|
Step 1.4
Evaluate |2011|.
Step 1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-2⋅-1+2(2⋅1-1⋅0)
Step 1.4.2
Simplify the determinant.
Step 1.4.2.1
Multiply 2 by 1.
0-2⋅-1+2(2-1⋅0)
Step 1.4.2.2
Subtract 0 from 2.
0-2⋅-1+2⋅2
0-2⋅-1+2⋅2
0-2⋅-1+2⋅2
Step 1.5
Simplify the determinant.
Step 1.5.1
Simplify each term.
Step 1.5.1.1
Multiply -2 by -1.
0+2+2⋅2
Step 1.5.1.2
Multiply 2 by 2.
0+2+4
0+2+4
Step 1.5.2
Add 0 and 2.
2+4
Step 1.5.3
Add 2 and 4.
6
6
6
Step 2
Since the determinant is non-zero, the inverse exists.
Step 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[022100201010110001]
Step 4
Step 4.1
Swap R2 with R1 to put a nonzero entry at 1,1.
[201010022100110001]
Step 4.2
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
Step 4.2.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[220212021202022100110001]
Step 4.2.2
Simplify R1.
[10120120022100110001]
[10120120022100110001]
Step 4.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Step 4.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[101201200221001-11-00-120-00-121-0]
Step 4.3.2
Simplify R3.
[1012012002210001-120-121]
[1012012002210001-120-121]
Step 4.4
Multiply each element of R2 by 12 to make the entry at 2,2 a 1.
Step 4.4.1
Multiply each element of R2 by 12 to make the entry at 2,2 a 1.
[1012012002222212020201-120-121]
Step 4.4.2
Simplify R2.
[10120120011120001-120-121]
[10120120011120001-120-121]
Step 4.5
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
Step 4.5.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[1012012001112000-01-1-12-10-12-12-01-0]
Step 4.5.2
Simplify R3.
[10120120011120000-32-12-121]
[10120120011120000-32-12-121]
Step 4.6
Multiply each element of R3 by -23 to make the entry at 3,3 a 1.
Step 4.6.1
Multiply each element of R3 by -23 to make the entry at 3,3 a 1.
[101201200111200-23⋅0-23⋅0-23(-32)-23(-12)-23(-12)-23⋅1]
Step 4.6.2
Simplify R3.
[1012012001112000011313-23]
[1012012001112000011313-23]
Step 4.7
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Step 4.7.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[101201200-01-01-112-130-130+230011313-23]
Step 4.7.2
Simplify R2.
[1012012001016-13230011313-23]
[1012012001016-13230011313-23]
Step 4.8
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
Step 4.8.1
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
[1-12⋅00-12⋅012-12⋅10-12⋅1312-12⋅130-12(-23)01016-13230011313-23]
Step 4.8.2
Simplify R1.
[100-16131301016-13230011313-23]
[100-16131301016-13230011313-23]
[100-16131301016-13230011313-23]
Step 5
The right half of the reduced row echelon form is the inverse.
[-16131316-13231313-23]