Precalculus Examples

Find the Inverse of the Resulting Matrix
[24-2-4]+[4-132][2424]+[4132]
Step 1
Add the corresponding elements.
[2+44-1-2+3-4+2][2+4412+34+2]
Step 2
Simplify each element.
Tap for more steps...
Step 2.1
Add 22 and 44.
[64-1-2+3-4+2][6412+34+2]
Step 2.2
Subtract 11 from 44.
[63-2+3-4+2][632+34+2]
Step 2.3
Add -22 and 33.
[631-4+2][6314+2]
Step 2.4
Add -44 and 22.
[631-2][6312]
[631-2][6312]
Step 3
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 4
Find the determinant.
Tap for more steps...
Step 4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
6-2-136213
Step 4.2
Simplify the determinant.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Multiply 66 by -22.
-12-131213
Step 4.2.1.2
Multiply -11 by 33.
-12-3123
-12-3123
Step 4.2.2
Subtract 33 from -1212.
-1515
-1515
-1515
Step 5
Since the determinant is non-zero, the inverse exists.
Step 6
Substitute the known values into the formula for the inverse.
1-15[-2-3-16]115[2316]
Step 7
Move the negative in front of the fraction.
-115[-2-3-16]115[2316]
Step 8
Multiply -115115 by each element of the matrix.
[-115-2-115-3-115-1-1156][1152115311511156]
Step 9
Simplify each element in the matrix.
Tap for more steps...
Step 9.1
Multiply -115-21152.
Tap for more steps...
Step 9.1.1
Multiply -22 by -11.
[2(115)-115-3-115-1-1156]2(115)115311511156
Step 9.1.2
Combine 22 and 115115.
[215-115-3-115-1-1156][215115311511156]
[215-115-3-115-1-1156][215115311511156]
Step 9.2
Cancel the common factor of 33.
Tap for more steps...
Step 9.2.1
Move the leading negative in -115115 into the numerator.
[215-115-3-115-1-1156][215115311511156]
Step 9.2.2
Factor 33 out of 1515.
[215-13(5)-3-115-1-1156]21513(5)311511156
Step 9.2.3
Factor 33 out of -33.
[215-135(3-1)-115-1-1156][215135(31)11511156]
Step 9.2.4
Cancel the common factor.
[215-135(3-1)-115-1-1156]
Step 9.2.5
Rewrite the expression.
[215-15-1-115-1-1156]
[215-15-1-115-1-1156]
Step 9.3
Combine -15 and -1.
[215--15-115-1-1156]
Step 9.4
Multiply -1 by -1.
[21515-115-1-1156]
Step 9.5
Multiply -115-1.
Tap for more steps...
Step 9.5.1
Multiply -1 by -1.
[215151(115)-1156]
Step 9.5.2
Multiply 115 by 1.
[21515115-1156]
[21515115-1156]
Step 9.6
Cancel the common factor of 3.
Tap for more steps...
Step 9.6.1
Move the leading negative in -115 into the numerator.
[21515115-1156]
Step 9.6.2
Factor 3 out of 15.
[21515115-13(5)6]
Step 9.6.3
Factor 3 out of 6.
[21515115-135(32)]
Step 9.6.4
Cancel the common factor.
[21515115-135(32)]
Step 9.6.5
Rewrite the expression.
[21515115-152]
[21515115-152]
Step 9.7
Combine -15 and 2.
[21515115-125]
Step 9.8
Multiply -1 by 2.
[21515115-25]
Step 9.9
Move the negative in front of the fraction.
[21515115-25]
[21515115-25]
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay