Precalculus Examples
[24-2-4]+[4-132][24−2−4]+[4−132]
Step 1
Add the corresponding elements.
[2+44-1-2+3-4+2][2+44−1−2+3−4+2]
Step 2
Step 2.1
Add 22 and 44.
[64-1-2+3-4+2][64−1−2+3−4+2]
Step 2.2
Subtract 11 from 44.
[63-2+3-4+2][63−2+3−4+2]
Step 2.3
Add -2−2 and 33.
[631-4+2][631−4+2]
Step 2.4
Add -4−4 and 22.
[631-2][631−2]
[631-2][631−2]
Step 3
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 4
Step 4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
6⋅-2-1⋅36⋅−2−1⋅3
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply 66 by -2−2.
-12-1⋅3−12−1⋅3
Step 4.2.1.2
Multiply -1−1 by 33.
-12-3−12−3
-12-3−12−3
Step 4.2.2
Subtract 33 from -12−12.
-15−15
-15−15
-15−15
Step 5
Since the determinant is non-zero, the inverse exists.
Step 6
Substitute the known values into the formula for the inverse.
1-15[-2-3-16]1−15[−2−3−16]
Step 7
Move the negative in front of the fraction.
-115[-2-3-16]−115[−2−3−16]
Step 8
Multiply -115−115 by each element of the matrix.
[-115⋅-2-115⋅-3-115⋅-1-115⋅6][−115⋅−2−115⋅−3−115⋅−1−115⋅6]
Step 9
Step 9.1
Multiply -115⋅-2−115⋅−2.
Step 9.1.1
Multiply -2−2 by -1−1.
[2(115)-115⋅-3-115⋅-1-115⋅6]⎡⎢⎣2(115)−115⋅−3−115⋅−1−115⋅6⎤⎥⎦
Step 9.1.2
Combine 22 and 115115.
[215-115⋅-3-115⋅-1-115⋅6][215−115⋅−3−115⋅−1−115⋅6]
[215-115⋅-3-115⋅-1-115⋅6][215−115⋅−3−115⋅−1−115⋅6]
Step 9.2
Cancel the common factor of 33.
Step 9.2.1
Move the leading negative in -115−115 into the numerator.
[215-115⋅-3-115⋅-1-115⋅6][215−115⋅−3−115⋅−1−115⋅6]
Step 9.2.2
Factor 33 out of 1515.
[215-13(5)⋅-3-115⋅-1-115⋅6]⎡⎣215−13(5)⋅−3−115⋅−1−115⋅6⎤⎦
Step 9.2.3
Factor 33 out of -3−3.
[215-13⋅5⋅(3⋅-1)-115⋅-1-115⋅6][215−13⋅5⋅(3⋅−1)−115⋅−1−115⋅6]
Step 9.2.4
Cancel the common factor.
[215-13⋅5⋅(3⋅-1)-115⋅-1-115⋅6]
Step 9.2.5
Rewrite the expression.
[215-15⋅-1-115⋅-1-115⋅6]
[215-15⋅-1-115⋅-1-115⋅6]
Step 9.3
Combine -15 and -1.
[215--15-115⋅-1-115⋅6]
Step 9.4
Multiply -1 by -1.
[21515-115⋅-1-115⋅6]
Step 9.5
Multiply -115⋅-1.
Step 9.5.1
Multiply -1 by -1.
[215151(115)-115⋅6]
Step 9.5.2
Multiply 115 by 1.
[21515115-115⋅6]
[21515115-115⋅6]
Step 9.6
Cancel the common factor of 3.
Step 9.6.1
Move the leading negative in -115 into the numerator.
[21515115-115⋅6]
Step 9.6.2
Factor 3 out of 15.
[21515115-13(5)⋅6]
Step 9.6.3
Factor 3 out of 6.
[21515115-13⋅5⋅(3⋅2)]
Step 9.6.4
Cancel the common factor.
[21515115-13⋅5⋅(3⋅2)]
Step 9.6.5
Rewrite the expression.
[21515115-15⋅2]
[21515115-15⋅2]
Step 9.7
Combine -15 and 2.
[21515115-1⋅25]
Step 9.8
Multiply -1 by 2.
[21515115-25]
Step 9.9
Move the negative in front of the fraction.
[21515115-25]
[21515115-25]