Precalculus Examples
[111434101]⎡⎢⎣111434101⎤⎥⎦
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 1.3
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|4411|∣∣∣4411∣∣∣
Step 1.4
Multiply element a12a12 by its cofactor.
-1|4411|−1∣∣∣4411∣∣∣
Step 1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|1111|∣∣∣1111∣∣∣
Step 1.6
Multiply element a22a22 by its cofactor.
3|1111|3∣∣∣1111∣∣∣
Step 1.7
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|1144|∣∣∣1144∣∣∣
Step 1.8
Multiply element a32a32 by its cofactor.
0|1144|0∣∣∣1144∣∣∣
Step 1.9
Add the terms together.
-1|4411|+3|1111|+0|1144|−1∣∣∣4411∣∣∣+3∣∣∣1111∣∣∣+0∣∣∣1144∣∣∣
-1|4411|+3|1111|+0|1144|−1∣∣∣4411∣∣∣+3∣∣∣1111∣∣∣+0∣∣∣1144∣∣∣
Step 2
Multiply 00 by |1144|∣∣∣1144∣∣∣.
-1|4411|+3|1111|+0−1∣∣∣4411∣∣∣+3∣∣∣1111∣∣∣+0
Step 3
Step 3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-1(4⋅1-1⋅4)+3|1111|+0−1(4⋅1−1⋅4)+3∣∣∣1111∣∣∣+0
Step 3.2
Simplify the determinant.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 4 by 1.
-1(4-1⋅4)+3|1111|+0
Step 3.2.1.2
Multiply -1 by 4.
-1(4-4)+3|1111|+0
-1(4-4)+3|1111|+0
Step 3.2.2
Subtract 4 from 4.
-1⋅0+3|1111|+0
-1⋅0+3|1111|+0
-1⋅0+3|1111|+0
Step 4
Step 4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1⋅0+3(1⋅1-1⋅1)+0
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply 1 by 1.
-1⋅0+3(1-1⋅1)+0
Step 4.2.1.2
Multiply -1 by 1.
-1⋅0+3(1-1)+0
-1⋅0+3(1-1)+0
Step 4.2.2
Subtract 1 from 1.
-1⋅0+3⋅0+0
-1⋅0+3⋅0+0
-1⋅0+3⋅0+0
Step 5
Step 5.1
Simplify each term.
Step 5.1.1
Multiply -1 by 0.
0+3⋅0+0
Step 5.1.2
Multiply 3 by 0.
0+0+0
0+0+0
Step 5.2
Add 0 and 0.
0+0
Step 5.3
Add 0 and 0.
0
0