Precalculus Examples
[987456123]⎡⎢⎣987456123⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]
Step 2
Step 2.1
Calculate the minor for element a11.
Step 2.1.1
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5623|
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a11=5⋅3-2⋅6
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 5 by 3.
a11=15-2⋅6
Step 2.1.2.2.1.2
Multiply -2 by 6.
a11=15-12
a11=15-12
Step 2.1.2.2.2
Subtract 12 from 15.
a11=3
a11=3
a11=3
a11=3
Step 2.2
Calculate the minor for element a12.
Step 2.2.1
The minor for a12 is the determinant with row 1 and column 2 deleted.
|4613|
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a12=4⋅3-1⋅6
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 4 by 3.
a12=12-1⋅6
Step 2.2.2.2.1.2
Multiply -1 by 6.
a12=12-6
a12=12-6
Step 2.2.2.2.2
Subtract 6 from 12.
a12=6
a12=6
a12=6
a12=6
Step 2.3
Calculate the minor for element a13.
Step 2.3.1
The minor for a13 is the determinant with row 1 and column 3 deleted.
|4512|
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a13=4⋅2-1⋅5
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 4 by 2.
a13=8-1⋅5
Step 2.3.2.2.1.2
Multiply -1 by 5.
a13=8-5
a13=8-5
Step 2.3.2.2.2
Subtract 5 from 8.
a13=3
a13=3
a13=3
a13=3
Step 2.4
Calculate the minor for element a21.
Step 2.4.1
The minor for a21 is the determinant with row 2 and column 1 deleted.
|8723|
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a21=8⋅3-2⋅7
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 8 by 3.
a21=24-2⋅7
Step 2.4.2.2.1.2
Multiply -2 by 7.
a21=24-14
a21=24-14
Step 2.4.2.2.2
Subtract 14 from 24.
a21=10
a21=10
a21=10
a21=10
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|9713|
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=9⋅3-1⋅7
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 9 by 3.
a22=27-1⋅7
Step 2.5.2.2.1.2
Multiply -1 by 7.
a22=27-7
a22=27-7
Step 2.5.2.2.2
Subtract 7 from 27.
a22=20
a22=20
a22=20
a22=20
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|9812|
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=9⋅2-1⋅8
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 9 by 2.
a23=18-1⋅8
Step 2.6.2.2.1.2
Multiply -1 by 8.
a23=18-8
a23=18-8
Step 2.6.2.2.2
Subtract 8 from 18.
a23=10
a23=10
a23=10
a23=10
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|8756|
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=8⋅6-5⋅7
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 8 by 6.
a31=48-5⋅7
Step 2.7.2.2.1.2
Multiply -5 by 7.
a31=48-35
a31=48-35
Step 2.7.2.2.2
Subtract 35 from 48.
a31=13
a31=13
a31=13
a31=13
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|9746|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=9⋅6-4⋅7
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 9 by 6.
a32=54-4⋅7
Step 2.8.2.2.1.2
Multiply -4 by 7.
a32=54-28
a32=54-28
Step 2.8.2.2.2
Subtract 28 from 54.
a32=26
a32=26
a32=26
a32=26
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|9845|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=9⋅5-4⋅8
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 9 by 5.
a33=45-4⋅8
Step 2.9.2.2.1.2
Multiply -4 by 8.
a33=45-32
a33=45-32
Step 2.9.2.2.2
Subtract 32 from 45.
a33=13
a33=13
a33=13
a33=13
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[3-63-1020-1013-2613]
[3-63-1020-1013-2613]