Precalculus Examples
[00400004]⎡⎢
⎢
⎢
⎢⎣00400004⎤⎥
⎥
⎥
⎥⎦
Step 1
Step 1.1
Swap R2R2 with R1R1 to put a nonzero entry at 1,11,1.
[40000004]⎡⎢
⎢
⎢
⎢⎣40000004⎤⎥
⎥
⎥
⎥⎦
Step 1.2
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
Step 1.2.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
[4404000004]⎡⎢
⎢
⎢
⎢⎣4404000004⎤⎥
⎥
⎥
⎥⎦
Step 1.2.2
Simplify R1R1.
[10000004]⎡⎢
⎢
⎢
⎢⎣10000004⎤⎥
⎥
⎥
⎥⎦
[10000004]⎡⎢
⎢
⎢
⎢⎣10000004⎤⎥
⎥
⎥
⎥⎦
Step 1.3
Swap R4R4 with R2R2 to put a nonzero entry at 2,22,2.
[10040000]⎡⎢
⎢
⎢
⎢⎣10040000⎤⎥
⎥
⎥
⎥⎦
Step 1.4
Multiply each element of R2R2 by 1414 to make the entry at 2,22,2 a 11.
Step 1.4.1
Multiply each element of R2R2 by 1414 to make the entry at 2,22,2 a 11.
[1004440000]⎡⎢
⎢
⎢
⎢⎣1004440000⎤⎥
⎥
⎥
⎥⎦
Step 1.4.2
Simplify R2R2.
[10010000]⎡⎢
⎢
⎢
⎢⎣10010000⎤⎥
⎥
⎥
⎥⎦
[10010000]⎡⎢
⎢
⎢
⎢⎣10010000⎤⎥
⎥
⎥
⎥⎦
[10010000]⎡⎢
⎢
⎢
⎢⎣10010000⎤⎥
⎥
⎥
⎥⎦
Step 2
The row space of a matrix is the collection of all possible linear combinations of its row vectors.
c1[10]+c2[01]+c3[00]+c4[00]c1[10]+c2[01]+c3[00]+c4[00]
Step 3
The basis for Row(A)Row(A) is the non-zero rows of a matrix in reduced row echelon form. The dimension of the basis for Row(A)Row(A) is the number of vectors in the basis.
Basis of Row(A)Row(A): {[10],[01]}{[10],[01]}
Dimension of Row(A)Row(A): 22