Precalculus Examples

Find the Basis and Dimension for the Row Space of the Matrix
[00400004]⎢ ⎢ ⎢ ⎢00400004⎥ ⎥ ⎥ ⎥
Step 1
Find the reduced row echelon form.
Tap for more steps...
Step 1.1
Swap R2R2 with R1R1 to put a nonzero entry at 1,11,1.
[40000004]⎢ ⎢ ⎢ ⎢40000004⎥ ⎥ ⎥ ⎥
Step 1.2
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
Tap for more steps...
Step 1.2.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
[4404000004]⎢ ⎢ ⎢ ⎢4404000004⎥ ⎥ ⎥ ⎥
Step 1.2.2
Simplify R1R1.
[10000004]⎢ ⎢ ⎢ ⎢10000004⎥ ⎥ ⎥ ⎥
[10000004]⎢ ⎢ ⎢ ⎢10000004⎥ ⎥ ⎥ ⎥
Step 1.3
Swap R4R4 with R2R2 to put a nonzero entry at 2,22,2.
[10040000]⎢ ⎢ ⎢ ⎢10040000⎥ ⎥ ⎥ ⎥
Step 1.4
Multiply each element of R2R2 by 1414 to make the entry at 2,22,2 a 11.
Tap for more steps...
Step 1.4.1
Multiply each element of R2R2 by 1414 to make the entry at 2,22,2 a 11.
[1004440000]⎢ ⎢ ⎢ ⎢1004440000⎥ ⎥ ⎥ ⎥
Step 1.4.2
Simplify R2R2.
[10010000]⎢ ⎢ ⎢ ⎢10010000⎥ ⎥ ⎥ ⎥
[10010000]⎢ ⎢ ⎢ ⎢10010000⎥ ⎥ ⎥ ⎥
[10010000]⎢ ⎢ ⎢ ⎢10010000⎥ ⎥ ⎥ ⎥
Step 2
The row space of a matrix is the collection of all possible linear combinations of its row vectors.
c1[10]+c2[01]+c3[00]+c4[00]c1[10]+c2[01]+c3[00]+c4[00]
Step 3
The basis for Row(A)Row(A) is the non-zero rows of a matrix in reduced row echelon form. The dimension of the basis for Row(A)Row(A) is the number of vectors in the basis.
Basis of Row(A)Row(A): {[10],[01]}{[10],[01]}
Dimension of Row(A)Row(A): 22
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay